
An Introduction to Probabilistic Numerical Methods

Chris. J. Oates
School of Mathematics, Statistics and Physics @ Newcastle University

Programme on Data-Centric Engineering @ Alan Turing Institute

October 2017 @ Turing

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing 1 / 42



Numerical Methods

optimisation

integration

linear algebra

solution of differential equations

. . .
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Probabilistic Numerical Methods

What is the fuss all about?
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Probabilistic Numerical Methods

The goal:

Numerical Task =⇒ Finite Computation =⇒ Distribution on Output
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Optimisation
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Optimisation

x
∗ = arg max f (x)

Well-defined:
f ∈ Cα(X ) for some α ≥ 0 and x ∈ X a compact subset of Rd .

Well-posed:
Allowed n evaluations of f (·) at inputs which you can select.
Aim to minimise ‖x̂∗ − x∗‖2.
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Optimisation

x
∗ = arg max f (x)

Two distinct requirements:

A method to select the function evaluation locations x1, . . . , xn.
Uniform grid over X?
Adaptive selection, e.g. gradient ascent with estimated gradients?

An estimator {(xi , f (xi ))}ni=1 7→ x̂
∗.

The empirical maximum x̂∗ = xi∗ where i∗ = arg maxi=1,...,n f (xi )?
Something better?

Key idea: Estimator uncertainty quantification!
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Probabilistic Optimisation

Start with the data that have been collected:

D = {(xi , f (xi ))}ni=1

Bayesian linear regression onto a basis {φi}mi=1:

f (x) = β1φ1(x) + · · ·+ βmφm(x)

with n ≤ m ∈ N ∪ {∞}.
Prior p(β1, . . . , βm)

Likelihood
∏n

i=1 δ(f (xi )− β1φ1(xi )− · · · − βmφm(xi ))

Posterior p(β1, . . . , βn|D)

Posterior marginal p(x∗|D)
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Probabilistic Optimisation

Calculations for the conjugate set-up:

Let: β = (β1, . . . , βm)

Prior: β|λ ∼ N(0, λI ) and λ ∼ p(λ) ∝ λ−1.

Posterior:

β|D ∼ MVT

(
(I + Φ>Φ)−1Φ>f ,

1

n
(f >Φ>(I + ΦΦ>)−1Φf )(I + Φ>Φ)−1, n

)
where f = (f (x1), . . . , f (xn)) and [Φ]ij = φj(xi ).

Posterior marginal: x
∗|D ∼ ?

Draw β from β|D
Evaluate x∗ = arg maxβ1φ1(x) + · · ·+ βmφm(x)
Repeat.
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Probabilistic Optimisation

Compute x
∗ = arg max f (x):
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Some Discussion Points

Close connection between statistics and design of numerical optimisation methods.

Similar to “Bayesian optimisation” (Mockus, 1989).

Kernel trick maps to Gaussian processes.

The distributional output p(x∗|D) provides uncertainty quantification.

Propagation and the Bayesian mantra of Dawid.

Numerical analysts want to consider order of convergence and constants (of the
point estimator).

Similar considerations relevant to posterior contraction.
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Application

https://uk.mathworks.com/help/stats/
tune-random-forest-using-quantile-error-and-bayesian-optimization.html
(but the MATLAB function doesn’t provide uncertainty quantification!)
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Integration
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Integration

I =

∫
f (x)π(x)dx

Well-defined:
f ∈ L2(π)?
f ∈ Cα(X ) for some α ≥ 0 and x ∈ X a compact subset of Rd .

Well-posed:
Allowed n evaluations of f (·) at inputs which you can select.

Aim to minimise |Î − I |.
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Integration

I =

∫
f (x)π(x)dx

Two distinct requirements:

A method to select the integrand evaluation locations x1, . . . , xn.
Uniform grid over X?
Adaptive selection, e.g. based on local error indicators?

An estimator {(xi , f (xi ))}ni=1 7→ Î .

The arithmetic mean Î = 1
n

∑n
i=1 f (xi )?

Something better?

Key idea (again): Estimator uncertainty quantification!
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n

∑n
i=1 f (xi )?

Something better?

Key idea (again): Estimator uncertainty quantification!

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing 15 / 42



Integration

I =

∫
f (x)π(x)dx

Two distinct requirements:

A method to select the integrand evaluation locations x1, . . . , xn.
Uniform grid over X?
Adaptive selection, e.g. based on local error indicators?

An estimator {(xi , f (xi ))}ni=1 7→ Î .
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Probabilistic Integration

Start with the data that have been collected:

D = {(xi , f (xi ))}ni=1

Bayesian linear regression onto a basis {φi}mi=1:

f (x) = β1φ1(x) + · · ·+ βmφm(x)

with n ≤ m ∈ N ∪ {∞}.
Prior p(β1, . . . , βm)

Likelihood
∏n

i=1 δ(f (xi )− β1φ1(xi )− · · · − βmφm(xi ))

Posterior p(β1, . . . , βn|D)

Posterior marginal p(I |D)
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D = {(xi , f (xi ))}ni=1

Bayesian linear regression onto a basis {φi}mi=1:

f (x) = β1φ1(x) + · · ·+ βmφm(x)

with n ≤ m ∈ N ∪ {∞}.
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Probabilistic Integration

Calculations for the conjugate set-up:

Let: β = (β1, . . . , βm)

Prior: β|λ ∼ N(0, λI ) and λ ∼ p(λ) ∝ λ−1.

Posterior:

β|D ∼ MVT

(
(I + Φ>Φ)−1Φ>f ,

1

n
(f >Φ>(I + ΦΦ>)−1Φf )(I + Φ>Φ)−1, n

)
where f = (f (x1), . . . , f (xn)) and [Φ]ij = φj(xi ).

Posterior marginal:

I |D ∼ Student-T
(
Ψ>(I + Φ>Φ)−1Φ>f ,

1

n
(f >Φ>(I + ΦΦ>)−1Φf )Ψ>(I + Φ>Φ)−1Ψ, n

)
where [Ψ]i =

∫
φi (x)π(x)dx .
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Probabilistic Integration

Compute
∫
f (x)π(x)dx :
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Some Discussion Points

Similar to “Bayesian quadrature” (O’Hagan, 1991).

Kernel trick maps to GPs.

Theoretical results were provided in Briol et al. 2016:

Posterior mean Î satisfies Î − I = OP(n−α/d+ε).
Stronger assumptions on f , such as f ∈ Hα(0, 1)⊗ · · · ⊗ Hα(0, 1), lead to

Î − I = OP(n−α+ε) for an appropriately sparse basis {φi}ni=1.

Posterior is concentrated on Î , so rates of contraction to I can also be established.

Posterior mean often coincides with standard quadrature methods (Särkkä et al.,
2016).

How to select the {xi}ni=1?
Recall the posterior scale was determined by

1

n
(f >Φ>(I + ΦΦ>)−1Φf )Ψ>(I + Φ>Φ)−1Ψ

Select {xi}ni=1 to minimise

(∗) Ψ>(I + Φ>Φ)−1Ψ ?

Select xn to minimise (∗) based on {xi}n−1
i=1 fixed? (Similar to “sequential Bayesian

quadrature”.)
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Î − I = OP(n−α+ε) for an appropriately sparse basis {φi}ni=1.
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Some Discussion Points

From Briol et al., 2016:
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Figure 2: Illustration of states used for quadrature, based on a Gaussian mixture Π. Left:
Monte Carlo (MC) sampling from Π. Middle: A Sobol sequence, a specific type of Quasi-MC
(QMC) point sequence, mapped to Π. Right: States from an experimental design scheme
based on the Frank-Wolfe (FW) algorithm. Estimators based on QMC or FW typically
outperform estimators based on MC due to their better coverage of Π.

A related class of methods is Quasi Monte Carlo (QMC) (Hickernell, 1998). These
methods exploit knowledge of the RKHS H to spread the states in an efficient, deterministic
way over the domain X (Figure 2, middle). QMC also approximates integrals using a
quadrature rule Π̂QMC[f ] that has uniform weights wQMC

i := 1/n. These methods benefit
from an extensive theoretical literature (Dick and Pillichshammer, 2010). The (in some cases)
optimal convergence rates as well as sound statistical properties of QMC have recently led
to interest within the statistics community (e.g. Hickernell et al., 2005; Gerber and Chopin,
2015; Oates et al., 2016c).

2.4.2 Experimental Design Schemes

An Optimal BQ (OBQ) rule selects states {xi}ni=1 to globally minimise the posterior variance
(equivalent to globally minimising the WCE). Särkka et al. (2016) recently showed that
OBQ corresponds to classical quadrature rules (e.g. Gauss-Hermite) for specific choices of
covariance function k. Indeed, the average case analysis literature (Ritter, 2000) contains
upper and lower bounds for the WCE that map directly onto statements about convergence
rates for OBQ as n→∞. However OBQ can generally not be implemented; the problem of
finding optimal states is in general NP-hard (Schölkopf and Smola, 2002, Sec. 10.2.3).

A more pragmatic approach to select states is using experimental design methods, such
as the greedy algorithm sequentially minimising the posterior variance at each iteration.
This rule, called Sequential BQ (SBQ), is straightforward to implement, e.g. using general-
purpose numerical optimisation, and is a probabilistic integration method that is often used
in practice (Osborne et al., 2012; Gunter et al., 2014). More sophisticated optimisation al-
gorithms have also been used to select states. For example, in the QMC literature Nuyens
and Cools (2006) framed the construction of lattice rules as an optimisation problem, in

11

One of these is (a variant on) sequential Bayesian quadrature - which one?
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Application

object

𝝎𝒊

𝝎𝒐

𝑆2

environment map
camera

𝒏

𝐿𝑒(𝝎𝑜)

𝐿𝑖(𝝎𝑜)

From Briol et al., 2016.
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Linear Algebra
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Linear Algebra

Ax = b

Well-defined:
A is a N × N symmetric positive definite matrix.

Well-posed:
Allowed n� N matrix-vector multiplications.
Represented as [s>i A]x = s>i b for i = 1, . . . , n.
You are allowed to select the directions s1, . . . , sn.

Aim to minimise ‖x̂ − x‖A where ‖z‖A =
√
z>Az .
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Linear Algebra

Ax = b

Two distinct requirements:

A method to select the directions s1, . . . , sn.
Random projections?
Sequential selection, e.g. gradient descent or conjugate gradient?

An estimator {(s>i A, s>i b)}ni=1 7→ x̂ .

A minimal ‖ · ‖2 norm vector that satisfies s>i Ax̂ = s>i b for i = 1, . . . , n?
Something better?

Key idea (again): Estimator uncertainty quantification!
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Recap: Conjugate Gradient Method

Let 〈·, ·〉A be the inner-product induced by ‖ · ‖A. (i.e. 〈z , z̃〉A = z
>
Az̃ .)

Call z , z̃ ∈ RN conjugate (w.r.t. A) if 〈z , z̃〉A = 0.

Suppose that we have a conjugate basis {s1, . . . , sN} for RN (i.e. 〈si , sj〉A = 0 for all
i 6= j).

Consider the natural sequence of approximations

x̂n =
n∑

i=1

αi si

where each

αi =
〈si , x〉A
〈si , si 〉A

=
s
>
i b

s>i Asi

can be computed in O(N2). The total computational cost is O(nN2).

So what is needed to proceed?

Need a smart choice of {s1, . . . , sN}.
For theory, need to bound ‖x − x̂n‖ = ‖

∑N
i=n+1 αixi‖ in your favourite ‖ · ‖.
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Recap: Conjugate Gradient Method

Aim is to adaptively select sn based on the computation up to iteration n − 1.

Gradient Descent: Notice that x is a minimum of

f (x) =
1

2
x
>
Ax − x

>
b.

This suggests to select sn = −∇f (x̂n−1) which is equal to rn−1 = b − Ax̂n−1. However,
this does not ensure {s1, . . . , sn} is a conjugate set.

Conjugate Gradient: A more delicate procedure selects

sn = rn−1 −
∑
i<m

s
>
i Arn−1

s>i Asi
si

i.e. gradient descent plus Gram-Schmidt orthogonalisation w.r.t 〈·, ·〉A to subtract off
components in the directions {s1, . . . , sn−1} already used.

For either method, the computational cost of selecting sn is O(N2), so the overall
computational overhead added is O(nN2); the same order as random projections.
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Probabilistic Linear Algebra

Start with the data that have been collected:

D = {(s>i A, s>i b)}ni=1

Deploy full Bayesian inference for x :

Prior p(x)

Likelihood
∏n

i=1 δ(s>i Ax − s
>
i b)

Posterior p(x |D)
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Probabilistic Linear Algebra

Calculations for the conjugate set-up:

Let: S = [s1, . . . , sn]>

Prior: x |λ ∼ N(0, λI ) and λ ∼ p(λ) ∝ λ−1.

Posterior:

x |D ∼ MVT
(

(I + A
>
S
>
SA)−1

A
>
S
>
Sb,

1

n
(b>S>A>S>(I + SAA

>
S)−1

SASb)(I + A
>
S
>
SA)−1, n

)

This is for general S .

For the conjugate gradient method applied to the pre-conditioned system
A
>
Ax = A

>
b we have the orthogonality equation SAA

>
S
> = I and the above can

be further simplified.
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Probabilistic Linear Algebra

[no video for this one!]
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Some Discussion Points

Approximate linear solvers used extensively in engineering applications.

Also relevant in statistics, e.g. simulation of spatial random fields.

It turns out that the posterior mean in our construction coincides with the classical
conjugate gradient (CG) method applied to the pre-conditioned system
A
>
Ax = A

>
b.

Thus the classical error bounds for CG are inherited.

The full posterior can be computed in O(nN2).
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Application

From McAdams et al., SIGGRAPH 2010:
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Solution of Differential Equations
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Solution of Differential Equations

E.g.:

∆u(x) = f (x), x ∈ X
u(x) = 0, x ∈ ∂X

Well-defined:
X ⊂ Rd be C1,1

f ∈ Lp(X ), p > n/2

Cor. 9.18 in Gilbarg and Trudinger ensures ∃! solution u ∈W 2,p
loc (X ) ∩ C0(X ∪ ∂X )

Well-posed:
Allowed n evaluations of f (·) at inputs x1, . . . , xn ∈ X ∪ ∂X which you can select.
Aim to minimise

∫
X ‖û(x)− u(x)‖2

2dx .
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Solution of Differential Equations

∆u(x) = f (x), x ∈ X
u(x) = 0, x ∈ ∂X

Two distinct requirements:

A method to select the function evaluation locations x1, . . . , xn ∈ X ∪ ∂X .
Corners of a mesh on X ∪ ∂X?
An adaptive method?

An estimator {(xi , f (xi ))}ni=1 7→ û(·).
Linear interpolation of the f (xi ) and then solution of the PDE?
Something better?

Key idea (again): Estimator uncertainty quantification!
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Probabilistic Solution of Differential Equations

Start with the data that have been collected:

D = {(xi , f (xi ))}ni=1

Bayesian linear regression onto a basis {φi}mi=1:

f (x) = β1φ1(x) + · · ·+ βmφm(x)

with n ≤ m ∈ N ∪ {∞}.
Prior p(β1, . . . , βm)

Likelihood
∏n

i=1 δ(f (xi )− β1φ1(xi )− · · · − βmφm(xi ))

Posterior p(β1, . . . , βn|D)

Posterior marginal p(u(·)|D)
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Probabilistic Solution of Differential Equations

Calculations for the conjugate set-up:

Let: β = (β1, . . . , βm)

Prior: β|λ ∼ N(0, λI ) and λ ∼ p(λ) ∝ λ−1.

Posterior:

β|D ∼ MVT

(
(I + Φ>Φ)−1Φ>f ,

1

n
(f >Φ>(I + ΦΦ>)−1Φf )(I + Φ>Φ)−1, n

)
where f = (f (x1), . . . , f (xn)) and [Φ]ij = φj(xi ).

Posterior marginal:

u(x)|D ∼ Student-T
(
U(x)>(I + Φ>Φ)−1Φ>f ,

1

n
(f >Φ>(I + ΦΦ>)−1Φf )U(x)>(I + Φ>Φ)−1

U(x), n

)
where [U(x)]i = ui (x) and ui solves ∆u = φi on X and u = 0 on ∂X . [N.B. Don’t
need to explicitly compute the φi if you have the Green’s function of the PDE.]
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Probabilistic Solution of Differential Equations

Solve the ODE du
dx

= f (x), u(0) = u0 on x ∈ [0,T ]:
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Some Discussion Points

Posterior mean coincides with a classical “collocation” method.

Generalises to GPs with the kernel trick.

Theoretical results (for a method based on GPs) in Cockayne et al., 2016:
The posterior mean converges in ‖ · ‖∞ at a rate

O(hα−ρ−
d
2 ).

The posterior mass for a ball of radius ε centred on the true solution u(·) scales as

1− O

(
h2α−2ρ−d

ε

)
.
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Application

http://www.svflux.com/subdomains/svflux.com/index.shtml
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Summary
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Theoretical Questions

General theory?

Beyond linear and Gaussian assumptions?

Experimental design?

Lots of work to do, but initial results in:

Cockayne J, Oates CJ, Sullivan T, Girolami M
Bayesian Probabilistic Numerical Methods

arXiv:1702.03673 (2017)
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Computational Questions

Propagation of uncertainty through a computational workflow?

Compatibility of multiple probabilistic numerical methods?

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing 42 / 42


	Optimisation
	Integration
	Linear Algebra
	Solution of Differential Equations
	Summary

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	anm2: 


