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Numerical Methods

optimisation

integration

linear algebra

@ solution of differential equations
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Probabilistic Numerical Methods

What is the fuss all about?
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Probabilistic Numerical Methods

The goal:

Numerical Task = Finite Computation = Distribution on Output
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Optimisation

Probabilistic Numerical Computation



Optimisation

x* = arg max f(x)
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Optimisation

x* = arg max f(x)

o Well-defined:
o f € C*(X) for some & > 0 and x € X a compact subset of R9.
o Well-posed:

o Allowed n evaluations of f(-) at inputs which you can select.
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Optimisation

x* = arg max f(x)

o Well-defined:
o f € C*(X) for some & > 0 and x € X a compact subset of R9.
o Well-posed:

o Allowed n evaluations of f(-) at inputs which you can select.
e Aim to minimise ||®* — x*||2.
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Optimisation

x* = arg max f(x)
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Optimisation

x* = arg max f(x)

Two distinct requirements:
@ A method to select the function evaluation locations xi, ..., xn.
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Optimisation

x* = arg max f(x)

Two distinct requirements:
@ A method to select the function evaluation locations xi, ..., xn.

o Uniform grid over X7
o Adaptive selection, e.g. gradient ascent with estimated gradients?

o An estimator {(xi, f(xi))}/=1 — X*.
o The empirical maximum £* = x;= where i* = argmax;_1,... » f(x;)?
o Something better?

o Key idea: Estimator uncertainty quantification!
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Probabilistic Optimisation

Start with the data that have been collected:

D = {(xi, f(x:))}ima
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Probabilistic Optimisation

Start with the data that have been collected:

D = {(xi, f(x:))}ima

Bayesian linear regression onto a basis {¢;}/Z;:
fF(x) = P11 (x) + -+ + Bmdm(x)

with n < m e NU {co}.
o Prior p(B1,...,8m)
o Likelihood T, 6(f(xi) — Brg1(xi) — -+ — BmPm(xi))
o Posterior p(fB1,. .., Bn|D)
@ Posterior marginal p(x*|D)

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing



Probabilistic Optimisation

Calculations for the conjugate set-up:
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Calculations for the conjugate set-up:

o Let: ﬁ:(ﬂlynwﬁm)

@ Prior:
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Probabilistic Optimisation

Calculations for the conjugate set-up:

o Let: B=(B1,---,0m)
o Prior: B|A ~ N(0, /) and X ~ p(A) oc A7%.
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Probabilistic Optimisation

Calculations for the conjugate set-up:
o Let: B=(B1,---,0m)
o Prior: B|A ~ N(0, /) and X ~ p(A) oc A7%.

o Posterior:
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Probabilistic Optimisation

Calculations for the conjugate set-up:

o Let: B=(B1,---,0m)
o Prior: B|A ~ N(0, /) and X ~ p(A) oc A7%.

o Posterior:
B|D ~ MVT ((I +®'®)'®'F, %(Fclﬂ(l +@dd") eI+ D), n)

where f = (f(x1),...,f(xa)) and [®]; = ¢;(x;).
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Probabilistic Optimisation

Calculations for the conjugate set-up:

o Let: B=(B1,---,0m)
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Probabilistic Optimisation

Calculations for the conjugate set-up:
o Let: B=(B1,---,0m)
o Prior: B|A ~ N(0, /) and X ~ p(A) oc A7%.

o Posterior:
B|D ~ MVT ((I +®'®)'®'f, %(Fclﬂ(l + @) 'ef)(I + o ®) T, n)

where f = (f(x1),...,f(xa)) and [®]; = ¢;(x;).
o Posterior marginal: x*|D ~ ?
o Draw 3 from 3|D

o Evaluate x* = argmax fB1¢1(x) + - - - + BmPm(x)
o Repeat.
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Probabilistic Optimisation

Compute x™ = arg max f(x):

Objective Function
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Some Discussion Points
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The distributional output p(x*|D) provides uncertainty quantification.

Propagation and the Bayesian mantra of Dawid.

Numerical analysts want to consider order of convergence and constants (of the
point estimator).
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Some Discussion Points

Close connection between statistics and design of numerical optimisation methods.
Similar to “Bayesian optimisation” (Mockus, 1989).

Kernel trick maps to Gaussian processes.

The distributional output p(x*|D) provides uncertainty quantification.

Propagation and the Bayesian mantra of Dawid.

Numerical analysts want to consider order of convergence and constants (of the
point estimator).

Similar considerations relevant to posterior contraction.
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Application

Objective function model

Estimated objective function value

numpPTS minLs

https://uk.mathworks.com/help/stats/
tune-random-forest-using-quantile-error-and-bayesian-optimization.html
(but the MATLAB function doesn’t provide uncertainty quantification!)
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Integration
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Integration

I:/f(x)ﬂ(x)dx

o Well-defined:
o f e L2(7T)?
o f € C*(X) for some a > 0 and x € X a compact subset of RY.

o Well-posed:
o Allowed n evaluations of f(-) at inputs which you can select.
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Integration

I:/f(x)ﬂ(x)dx

o Well-defined:

o € Lym)?

o f € C*(X) for some a > 0 and x € X a compact subset of RY.
o Well-posed:

o Allowed n evaluations of f(-) at inputs which you can select.

o Aim to minimise |I — /].
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Integration

I:/f(x)w(x)dx
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Integration

I:/f(x)ﬂ(x)dx

Two distinct requirements:
@ A method to select the integrand evaluation locations xi, ..., X,.
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Integration
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Integration

I:/f(x)ﬂ(x)dx

Two distinct requirements:
@ A method to select the integrand evaluation locations xi, ..., X,.

o Uniform grid over X'?
o Adaptive selection, e.g. based on local error indicators?

o An estimator {(x;, f(x;))}y > I.

o The arithmetic mean [ = %27:1 f(x;)?
o Something better?

o Key idea (again): Estimator uncertainty quantification!
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Probabilistic Integration

Start with the data that have been collected:

D = {(xi, f(x:))}ima

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing 16 / 42



Probabilistic Integration

Start with the data that have been collected:

D = {(xi, f(x:))}ima

Bayesian linear regression onto a basis {¢;}/Z;:
fF(x) = P11 (x) + -+ + Bmdm(x)

with n < m e NU {co}.
@ Prior p(B1, ..., 08m)
o Likelihood TT7_, 6(f(x:) — Brgr(xi) — -+ - — Bmbm(xi))
o Posterior p(fB1,. .., Bn|D)
@ Posterior marginal p(/|D)
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Probabilistic Integration

Calculations for the conjugate set-up:

o Let: B=(L1,...,0m)
o Prior: B|A ~ N(0, M) and X ~ p(A) x A7%.

@ Posterior:
B|D ~ MVT ((I +®'®)'®'F, %(fTrbT(l + @) 'ef) (I +B ®) ", n)

where f = (f(x1),...,f(xa)) and [®]; = ¢;(x;).
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Probabilistic Integration

Calculations for the conjugate set-up:

o Let: B=(L1,...,0m)
o Prior: B|A ~ N(0, M) and X ~ p(A) x A7%.

@ Posterior:
B|D ~ MVT ((I +®'®)'®'F, %(fTrbT(l + @) 'ef) (I +B ®) ", n)

where f = (f(x1),...,f(xa)) and [®]; = ¢;(x;).

o Posterior marginal:
IID ~ Student-T (\IIT(I 1o @),
%(quF(/ +®0")'eNHT (1 +2 @)D, n)

where [¥]; = [ ¢i(x)m(x)dx.
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Probabilistic Integration

Compute [ f(x)r(x)dx:

Posterior Samples Corresponding Integrals

o

Reference Measure
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Some Discussion Points

o Similar to “Bayesian quadrature” (O’Hagan, 1991).
o Kernel trick maps to GPs.
@ Theoretical results were provided in Briol et al. 2016:

o Posterior mean [ satisfies [ — | = Op(n—/d+¢),

e Stronger assumptions on f, such as f € H¥(0,1) ® - - - ® H%(0, 1), lead to

I — 1 = Op(n=2%¢) for an appropriately sparse basis {$i}1_;-

o Posterior is concentrated on i so rates of contraction to / can also be established.

o Posterior mean often coincides with standard quadrature methods (Sarkka et al.,

2016).
o How to select the {x;}_;?
o Recall the posterior scale was determined by

1
~“(fFfeT(1+@d) 'eNT T (1+2 ®) W
n

o Select {x;}7_; to minimise

(x) T+ T®) w7

o Select x, to minimise (+) based on {x;}77;' fixed? (Similar to “sequential Bayesian
quadrature”.)
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Some Discussion Points

From Briol et al., 2016:

One of these is (a variant on) sequential Bayesian quadrature - which one?




Application

environment map
camera

V\ Li(w,)
N

N
Le@o) N

object

From Briol et al., 2016.
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Linear Algebra

o Well-defined:
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Linear Algebra

o Well-defined:
o Aisa N x N symmetric positive definite matrix.
o Well-posed:
o Allowed n < N matrix-vector multiplications.
o Represented as [s,/ A]lx =s; b fori=1,...,n.
o You are allowed to select the directions sy, ..., ss.
o Aim to minimise ||X — x||a where ||z]|a = VzT Az.

October 2017 @ Turing
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Linear Algebra

Ax=0»b

Two distinct requirements:
@ A method to select the directions si, ..., Sh.

o Random projections?
o Sequential selection, e.g. gradient descent or conjugate gradient?

o An estimator {(s;" A, s, b)}1_; — %.

o A minimal || - ||2 norm vector that satisfies s, Ax = s b for i =1,...,n?
e Something better?

o Key idea (again): Estimator uncertainty quantification!
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Recap: Conjugate Gradient Method

Let (-,-)a be the inner-product induced by || - [|la. (i.e. (z,2)a = z" AZ.)
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Suppose that we have a conjugate basis {s1, ..., sy} for RV (i.e. (s;,s;)a = 0 for all
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Let (-,-)a be the inner-product induced by || - [|la. (i.e. (z,2)a = z" AZ.)
Call z, 7 € R" conjugate (w.r.t. A) if (z,Z)a = 0.

Suppose that we have a conjugate basis {s1, ..., sy} for RV (i.e. (s;,s;)a = 0 for all

T#)).

Consider the natural sequence of approximations

n
Xn = E QS
=il

where each

Q= (S;,X)A _ S,-Tb
! <S,'7 S,'>A SI-TAS,'

can be computed in O(N?). The total computational cost is O(nN?).
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Recap: Conjugate Gradient Method

Let (-,-)a be the inner-product induced by || - [|la. (i.e. (z,2)a = z" AZ.)
Call z, 7 € R" conjugate (w.r.t. A) if (z,Z)a = 0.

Suppose that we have a conjugate basis {s1, ..., sy} for RV (i.e. (s;,s;)a = 0 for all

T#)).

Consider the natural sequence of approximations

n
Xn = E QS
=il

where each

Q= (S;,X)A _ S,-Tb
! <S,'7 S,'>A SI-TAS,'

can be computed in O(N?). The total computational cost is O(nN?).
So what is needed to proceed?
o Need a smart choice of {si,...,sy}.

@ For theory, need to bound ||x — %,|| = || ZI.N:,,H aix;i|| in your favourite || - ||.
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Recap: Conjugate Gradient Method

Aim is to adaptively select s, based on the computation up to iteration n — 1.
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Recap: Conjugate Gradient Method

Aim is to adaptively select s, based on the computation up to iteration n — 1.

Gradient Descent: Notice that x is a minimum of

1
f(x) = EXTAX —x'b.
This suggests to select s, = —Vf(X,—1) which is equal to r,_; = b — AX,_1. However,
this does not ensure {si,...,s,} is a conjugate set.
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1
f(x) = EXTAX —x'b.
This suggests to select s, = —Vf(X,—1) which is equal to r,_; = b — AX,_1. However,
this does not ensure {si,...,s,} is a conjugate set.

Conjugate Gradient: A more delicate procedure selects

G S;TArn_ls
n S rn—1— g i
, s As;
i<m 0

i.e. gradient descent plus Gram-Schmidt orthogonalisation w.r.t (-,-)a to subtract off
components in the directions {si, ..., s,—1} already used.
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Recap: Conjugate Gradient Method

Aim is to adaptively select s, based on the computation up to iteration n — 1.

Gradient Descent: Notice that x is a minimum of

1
f(x) = EXTAX —x'b.
This suggests to select s, = —Vf(X,—1) which is equal to r,_; = b — AX,_1. However,
this does not ensure {si,...,s,} is a conjugate set.

Conjugate Gradient: A more delicate procedure selects

G S;TArn_ls
n S rn—1— g i
, s As;
i<m 0

i.e. gradient descent plus Gram-Schmidt orthogonalisation w.r.t (-, -)a to subtract off
components in the directions {si, ..., s,—1} already used.

For either method, the computational cost of selecting s, is O(N?), so the overall
computational overhead added is O(nNz); the same order as random projections.
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Probabilistic Linear Algebra

Start with the data that have been collected:

D={(s' A s b},
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Probabilistic Linear Algebra

Start with the data that have been collected:

D={(s' A s b},

Deploy full Bayesian inference for x:
@ Prior p(x)
o Likelihood 7, 8(s;" Ax — s;" b)
@ Posterior p(x|D)
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Probabilistic Linear Algebra

Calculations for the conjugate set-up:
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Calculations for the conjugate set-up:
o Let: S = [sl,...,s,,]T

@ Prior:
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Probabilistic Linear Algebra

Calculations for the conjugate set-up:
o Let: S=1[s1,...,8]"
o Prior: x|\ ~ N(0,Al) and A ~ p(A) oc A7%.
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Probabilistic Linear Algebra

Calculations for the conjugate set-up:
o Let: S=1[s1,...,8]"
o Prior: x|\ ~ N(0,Al) and A ~ p(A) oc A7%.

o Posterior:

XD~ MVT((/+ATSTSA)*1ATSTSb,

%(bTSTATST(I + SAATS)'SASB)(I + AT STSA) !, n)
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Probabilistic Linear Algebra

Calculations for the conjugate set-up:

o Let: S=1[s1,...,8]"
o Prior: x|\ ~ N(0,Al) and A ~ p(A) oc A7%.
o Posterior:

XD~ MVT((/+ATSTSA)*1ATSTSb,

%(bTSTATST(I + SAATS)'SASB)(I + AT STSA) !, n)

@ This is for general S.

@ For the conjugate gradient method applied to the pre-conditioned system
AT Ax = A" b we have the orthogonality equation SAATS™ = I and the above can
be further simplified.
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Probabilistic Linear Algebra

[no video for this one!]
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Some Discussion Points

@ Approximate linear solvers used extensively in engineering applications.
@ Also relevant in statistics, e.g. simulation of spatial random fields.

@ It turns out that the posterior mean in our construction coincides with the classical
conjugate gradient (CG) method applied to the pre-conditioned system
ATAx=A"b.

@ Thus the classical error bounds for CG are inherited.

@ The full posterior can be computed in O(nN?).
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Application

From McAdams et al., SIGGRAPH 2010:
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Solution of Differential Equations
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Solution of Differential Equations
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o Well-defined:
o X CRY be CU1!
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e Cor. 9.18 in Gilbarg and Trudinger ensures 3! solution u € VVli’cp(X) NCo(x uox)
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o Well-defined:

o X CRY be CU1!

o fELP(X), p>n/2

e Cor. 9.18 in Gilbarg and Trudinger ensures 3! solution u € VVli’cp(X) NCo(x uox)
o Well-posed:

o Allowed n evaluations of f() at inputs x1,...,x, € X U9X which you can select.
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Solution of Differential Equations

E.g.
Au(x) f(x), xeX
u(x) = 0, xe€oX

o Well-defined:

o X CRY be CU1!

o fELP(X), p>n/2

e Cor. 9.18 in Gilbarg and Trudinger ensures 3! solution u € VVli’cp(X) NCo(x uox)
o Well-posed:

o Allowed n evaluations of f(-) at inputs x1,...,x, € X U9X which you can select.
o Aim to minimise [, [|3(x) — u(x)[|3dx.
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Solution of Differential Equations

Au(x) = f(x), xeX
u(x) = 0, xe€dX

Two distinct requirements:
@ A method to select the function evaluation locations x1,...,x, € X UOX.

o Corners of a mesh on X U 90X?
o An adaptive method?

o An estimator {(x;, f(x;))}i2y = 4(-).
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Solution of Differential Equations

Au(x) = f(x), xeX
u(x) = 0, xedX
Two distinct requirements:
@ A method to select the function evaluation locations x1,...,x, € X UOX.

o Corners of a mesh on X U 90X?
o An adaptive method?

o An estimator {(x;, f(x;))}7=1 — a(-).
o Linear interpolation of the f(x;) and then solution of the PDE?
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@ A method to select the function evaluation locations x1,...,x, € X UOX.

o Corners of a mesh on X U9X?
o An adaptive method?
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o Linear interpolation of the f(x;) and then solution of the PDE?
o Something better?

Chris. J. Oates Probabilistic Numerical Computation October 2017 @ Turing



Solution of Differential Equations

Au(x) = f(x), xeX
u(x) = 0, xedX
Two distinct requirements:
@ A method to select the function evaluation locations x1,...,x, € X UOX.

o Corners of a mesh on X U 90X?
o An adaptive method?

o An estimator {(x;, f(x;))}7=1 — a(-).
o Linear interpolation of the f(x;) and then solution of the PDE?
o Something better?

o Key idea (again): Estimator uncertainty quantification!
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Probabilistic Solution of Differential Equations

Start with the data that have been collected:

D = {(xi, f(x:))}ima
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Probabilistic Solution of Differential Equations

Start with the data that have been collected:

D = {(xi, f(x:))}ima

Bayesian linear regression onto a basis {¢;}/Z;:
fF(x) = P11 (x) + -+ + Bmdm(x)

with n < m e NU {o0}.
o Prior p(B1,...,8m)
o Likelihood T, 6(f(xi) — Brg1(xi) — -+ — BmPm(xi))
o Posterior p(fB1,. .., Bn|D)
@ Posterior marginal p(u(-)|D)
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Probabilistic Solution of Differential Equations

Calculations for the conjugate set-up:
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Probabilistic Solution of Differential Equations

Calculations for the conjugate set-up:

o Let: B=(B1,---,08m)
o Prior: B|A ~ N(0, M) and X ~ p(A) oc A7%.

o Posterior:
B|D ~ MVT ((l+¢>T¢>)*1<I>Tf S(FTe'(1+e9") 1<I>f)(l+<I>T<I>)’1,n>

where f = (f(x1),...,f(xn)) and [®]; = ¢(xi).
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Probabilistic Solution of Differential Equations

Calculations for the conjugate set-up:

o Let: B=(B1,---,08m)
o Prior: B|A ~ N(0, M) and X ~ p(A) oc A7%.

o Posterior:
B|D ~ MVT ((l+¢>T¢>)*1<I>Tf S(FTe'(1+e9") 1'I>f)(l+<I>T<I>)’1,n>

where f = (f(x1),...,f(xn)) and [®]; = ¢(xi).

@ Posterior marginal:
u(x)|D ~ Student-T (U(X)T(I +®'®)'®'f,
%(F@T(/ + @3 ) '®f)Ux) (1 + @ ®) U (x), n)

where [U(x)]i = ui(x) and u; solves Au = ¢; on X and u =0 on 9X. [N.B. Don't
need to explicitly compute the ¢; if you have the Green’s function of the PDE.]
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Probabilistic Solution of Differential Equations

Solve the ODE % = f(x), u(0) = uo on x € [0, T]:

Solution to an ODE
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Some Discussion Points

@ Posterior mean coincides with a classical “collocation” method.

@ Generalises to GPs with the kernel trick.
@ Theoretical results (for a method based on GPs) in Cockayne et al., 2016:
e The posterior mean converges in || - ||oo at a rate

o(ho—r=%).
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Some Discussion Points

@ Posterior mean coincides with a classical “collocation” method.

@ Generalises to GPs with the kernel trick.
@ Theoretical results (for a method based on GPs) in Cockayne et al., 2016:
e The posterior mean converges in || - ||oo at a rate

o(ho—r=%).

o The posterior mass for a ball of radius € centred on the true solution u(-) scales as

h2o¢72p7d
1-0 (7) .
€
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Application

http://wuw.svflux.com/subdomains/svflux.com/index.shtml

7 @ Turing


http://www.svflux.com/subdomains/svflux.com/index.shtml

Summary
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Theoretical Questions

@ General theory?
@ Beyond linear and Gaussian assumptions?

o Experimental design?

Lots of work to do, but initial results in:

Cockayne J, Oates CJ, Sullivan T, Girolami M
Bayesian Probabilistic Numerical Methods
arXiv:1702.03673 (2017)
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Computational Questions

o Propagation

of uncertainty through a computational workflow?

o Compatibility of multiple probabilistic numerical methods?

Hwr Ousstapng1 - 120152 51 Opoans =
0 Tpe n Sa Acpacaton | SubmisonTime__=. £ad Tme User Novscancn
1 ow,<30_upane T - 20110916 102148

Surmary IS Subtows 5obs | Dot | Hsioy

Flow-tstagmincra_fow_cas_ugdate<36

41 w4

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.

Chris. J. Oates
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