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History of Probabilistic Numerical Methods

Bayesian Solution of Ordinary Differential Equations
J. SKILLING, Cambridge University.

In: Maximum Entropy and Bayesian Methods, Springer
Netherlands, 23-37, 1992.

In the numerical solution of ordinary differen-
tial equations, a function y(x) is to be recon-
structed from knowledge of the functional form
of its derivative: dy/dx = f(x,y), together with
an appropriate boundary condition. The deriva-
tive f is evaluated at a sequence of suitably cho-
sen points (xk, yx), from which the form of y(-)
is estimated. This is an inference problem, which
can and perhaps should be treated by Bayesian
techniques. As always, the inference appears as
a probability distribution prob(y(-)), from which
random samples show the probabilistic reliability
of the results.
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Twelfth Job: Introduction to Graphical Models
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Recall Our Motivation: Computational Pipelines

Numerical analysis for the “drag and drop” era of computational pipelines:

Oipiapogs - 24052 )1 Spbons -

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.
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Recall Our Motivation: Computational Pipelines

Numerical analysis for the “drag and drop” era of computational pipelines:

Oipiapogs - 24052 )1 Spbons -

[Fig: IBM High Performance Computation]
The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often

large - pipelines of computation, so that “numerical risk” to end-users can be controlled.

—> Need to consider graphical representations of computation.
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Graphical Models in Statistics

A probabilistic graphical model comprises of:
o A graph G = (V, &), with vertex set V = {v1,...,v,} and edge set £ CV x V.

@ Semantics that associate the graph to statements about conditional (in)dependence
of random variables {X, },ev.
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@ Semantics that associate the graph to statements about conditional (in)dependence
of random variables {X, },ecv.

NB: More complicated graphical structures have also been developed.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:
o A graph G = (V, &), with vertex set V = {v1,...,V,} and edge set £ CV x V.

@ Semantics that associate the graph to statements about conditional (in)dependence
of random variables {X, },ecv.

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

@ The random variables {X, },cv are jointly Gaussian.
® The edges are undirected (i.e. (i,)) € € iff (j, i) € &).

@ Two vertices v; and v, are not connected by an edge iff X,, Ll Xy, | Xy\ 11,100} -
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Graphical Models in Statistics

A probabilistic graphical model comprises of:
o A graph G = (V, &), with vertex set V = {v1,...,V,} and edge set £ CV x V.

@ Semantics that associate the graph to statements about conditional (in)dependence
of random variables {X, },ecv.

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

@ The random variables {X, },cv are jointly Gaussian.
® The edges are undirected (i.e. (i,)) € € iff (j, i) € &).

@ Two vertices v; and v, are not connected by an edge iff X,, Ll Xy, | Xy\ 11,100} -

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.
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Bayesian Network

Example: In a Bayesian network:
@ The edges are directed (i.e. (i,j) € E = (j,i) ¢ E).
o No directed cycles exist (in particular, (i,7) ¢ £).
@ Two sets Q, R C V are d-separated by aset S C V' \ QU R iff Xo 1L Xg|Xs.
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Example: In a Bayesian network:
@ The edges are directed (i.e. (i,j) € E = (j,i) ¢ E).
o No directed cycles exist (in particular, (i,7) ¢ £).

@ Two sets Q, R C V are d-separated by aset S C V' \ QU R iff Xo 1L Xg|Xs.
(“global Markov property")

Let ang(S) denote the ancestors of the set S in G. (NB: This includes S itself.)

Given a directed, acyclic graph G = (V, £), we say that two sets Q, R C V are
d-separated by a set S C V' \ Q U R iff the following holds:

@ Form G’, the subgraph induced by ang(Q U R U S).

@ Form G" by connecting any un-connected parents (with an undirected edge) in G’

@ Remove all arrowheads in G”, to obtain an undirected “moral” graph Gmoral.
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Bayesian Network

Example: In a Bayesian network:
@ The edges are directed (i.e. (i,j) € E = (j,i) ¢ E).
o No directed cycles exist (in particular, (i,7) ¢ £).

@ Two sets Q, R C V are d-separated by aset S C V' \ QU R iff Xo 1L Xg|Xs.
(“global Markov property")

Let ang(S) denote the ancestors of the set S in G. (NB: This includes S itself.)

Given a directed, acyclic graph G = (V, £), we say that two sets Q, R C V are
d-separated by a set S C V' \ Q U R iff the following holds:

@ Form G’, the subgraph induced by ang(Q U R U S).
@ Form G” by connecting any un-connected parents (with an undirected edge) in G'.
@ Remove all arrowheads in G”, to obtain an undirected “moral” graph Gmoral.

@ Check that all paths from vertices in Q to vertices in R in Gmoral pass through a
vertex in S.
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Exercise: Is Vent-sys d-separated from HTPS?
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Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;
Xy AL Xnd(v)\Pa(v) [ XPa(v)
where, according to the graph G,
o Nd(v) are the non-descendants of v € V

@ Pa(v) are the parents of v € V.
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Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;
Xy AL Xnd(v)\Pa(v) [ XPa(v)
where, according to the graph G,
o Nd(v) are the non-descendants of v € V

@ Pa(v) are the parents of v € V.

Message: “Only immediate parents matter”.

Practically important, as it allows local verification of the global Markov property.
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Computational Work-Flows

Is there a connection to computation?

4 (70 g) large egg yolks ———Hpat™ ]

1/2 cup (100 g) granulated sugar )beah—

1/2 cup (120 mL) sweet Marsala wine " :@l{

1 b. (450 g) mascarpone cheese beat: / )se B

1 cup (240 mL) heavy cream: hip-Po seft-peaks ifepefrigerate 4 hours
about 40 ladyfinger cookies = A

12 oz. (355 mL) prepared espresso—.] . | scap2-seeond /

2 tsp. granulated sugar ——/

2 Tbs. (11 g) cocoa powder.

[Image from Li Haoyi's blog]
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Computational Work-Flows

In particular, is there a connection to functional programming?

def make_tiramisu(eg , cheese, cream, fingers, esprgsso, s

retu rrﬁe?ﬁgerate(

mble(
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Computational Work-Flows

Or a connection to grid or cloud computing?
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Thirteenth Job: Pipelines of Computation
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Example: Split Integration

Consider estimation of the integral

/01 x(t)dt

with a Bayesian probabilistic numerical method (Bayesian quadrature), based on the
information {x(t1),...,x(t2m)}, where t1 = 0, tm = 0.5, tom = 1.
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Example: Split Integration

Consider estimation of the integral

/01 x(t)dt

with a Bayesian probabilistic numerical method (Bayesian quadrature), based on the
information {x(t1),...,x(t2m)}, where t1 = 0, tm = 0.5, tom = 1.

Under what circumstances can this computation be partitioned into two independent

sub-computations?
1 0.5 1
/ u(x)dx:/ u(x)dx+/ u(x)dx
0

JO 0.5
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

[7° x(t)dt

[x(t), - x(tn-1)

| x(tmin), - x(tm) — 2 x(t)dt
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

[7° x(t)dt

[x(t), - x(tn-1)

°1

0.5 x(t)dt

]x(tmﬂ),...,x(th)H Mo

@ Nodes are of two kinds: Information nodes [, and method nodes H.
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Let's attempt to represent this with a graphical model, which we will call a pipeline:

[7° x(t)dt

[x(t), - x(tn-1)

ox(t)dt

]x(tmﬂ),...,x(th)H Mo

@ Nodes are of two kinds: Information nodes [, and method nodes H.

@ The graph is bipartite, so that edges connect a method node to an information node
or vice-versa. That is, edges are of the form (0 — H or B — [.

@ There are in general n method nodes, each with a unique label in {1,..., n}.
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

’X(tl),...,X x(t)dt

’x(tmﬂ o5 X(t)dt

@ Nodes are of two kinds: Information nodes [, and method nodes H.

@ The graph is bipartite, so that edges connect a method node to an information node
or vice-versa. That is, edges are of the form (0 — H or B — [.

@ There are in general n method nodes, each with a unique label in {1,..., n}.

@ The method node labelled i has m(/i) parents and one child. Its in-edges are
assigned a unique label in {1,..., m(i)}.
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

’X(tl),...,X x(t)dt

o5 X(t)dt

’ X(tms1),

@ Nodes are of two kinds: Information nodes [, and method nodes H.

@ The graph is bipartite, so that edges connect a method node to an information node
or vice-versa. That is, edges are of the form (0 — H or B — [.

@ There are in general n method nodes, each with a unique label in {1,..., n}.

@ The method node labelled i has m(/i) parents and one child. Its in-edges are
assigned a unique label in {1,..., m(i)}.

@ There is a unique terminal node and it is the ch||d of method node n. This
represents the principal quantity of interest Q(x fo
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline

’x(tl),...7x ./505 x(t)dt

’ X(tms1),

s x(t)dt

Let
@ M, be Bayesian quadrature for '00'5 x(t)dt.
@ M, be Bayesian quadrature for j015 x(t)dt.

@ Mj3 be the trivial probabilistic numerical method that adds its two inputs

Chris. J. Oates
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Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

’X(tl),...,X

x(t)dt

’x(th o5 X(t)dt

Q: When is the output of the pipeline Bayesian?

l.e. When does the output of the pipeline coincide with standard Bayesian quadrature
performed on the full information {x(t1), ..., x(t2m)}?
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Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

»0.5

[ x(t), - x(tm-1) 00 x(t)dt
[y x(t)dt
| X(tm11), ik x(t)dt
Pipeline
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Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

’X(t1),...,x(tm71)} 2 j60'5 x(t)dt

[y x(t)dt

\/

} ? folAs x(t)dt

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M;, M, and M3
are uniquely determined by the prior distribution P, for the integrand.
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Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

’X(tl),...,x(tm,l)} \

»0.5
0

x(t)dt

[y x(t)dt

\/

‘ 4

1
Jos

x(t)dt

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M;, M, and M3
are uniquely determined by the prior distribution P, for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.
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Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

’X(t1),...,x(tm71)} 2 ;)0'5 x(t)dt

[y x(t)dt

\
/

| X(tmi), -, X(t2m) | S 0 x(t)de

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M;, M, and M3
are uniquely determined by the prior distribution P, for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.

Starting to look like a Bayesian network...
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Coherence
. ’

Associate each node i with a random variable X;.

eg Xi={x(t1),...,x(tm-1)}, Xa = [° x(t)dt.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 177 / 184



Coherence
. ’

Associate each node i with a random variable X;.

eg Xi={x(t1),...,x(tm-1)}, Xa = [° x(t)dt.

A prior P, is coherent for the dependency graph if each X; 1L Xyd(iy\pa(i) | Xpa(i)- J
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Split Integration: Coherence
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Split Integration: Coherence

S R R

Thus in this instance we would ask whether f01'5 x(t)dt is independent of
x(t1), ..., x(tm=1) given x(tm), ..., x(t2m)?
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Split Integration: Coherence

S R R

Thus in this instance we would ask whether f01'5 x(t)dt is independent of
x(t1), ..., x(tm=1) given x(tm), ..., x(t2m)?

This is not true in general, but sometimes holds - e.g. a Wiener process prior P.
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Bayesian Pipelines

The process illustrated here can be made formal:

A pipeline is Bayesian for estimation of its output if:
© The prior Py is coherent for the dependency graph associated to the pipeline.

@ The methods M; are Bayesian probabilistic numerical methods.
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Bayesian Pipelines

The process illustrated here can be made formal:

A pipeline is Bayesian for estimation of its output if:
© The prior Py is coherent for the dependency graph associated to the pipeline.

@ The methods M; are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian
probabilistic numerical methods?
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Bayesian Pipelines

The process illustrated here can be made formal:

A pipeline is Bayesian for estimation of its output if:
© The prior Py is coherent for the dependency graph associated to the pipeline.

@ The methods M; are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian
probabilistic numerical methods?

Point for Discussion: How to do split integration in d > 2 dimensions?
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Conclusion

In Part VI it has been argued that:
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Conclusion

In Part VI it has been argued that:
o Computational work-flow can be related to graphical models used in statistical
applications.
@ Bayesian probabilistic numerical methods induce a joint distribution over unknown
objects, whose conditional (in)dependence structure can be represented with a
pipeline graph.
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Conclusion

In Part VI it has been argued that:

o Computational work-flow can be related to graphical models used in statistical
applications.

@ Bayesian probabilistic numerical methods induce a joint distribution over unknown
objects, whose conditional (in)dependence structure can be represented with a
pipeline graph.

@ The local Markov property can be used to check whether a large pipeline of
Bayesian probabilistic numerical methods is coherent.
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Conclusion

In Part VI it has been argued that:

o Computational work-flow can be related to graphical models used in statistical
applications.

@ Bayesian probabilistic numerical methods induce a joint distribution over unknown
objects, whose conditional (in)dependence structure can be represented with a
pipeline graph.

@ The local Markov property can be used to check whether a large pipeline of
Bayesian probabilistic numerical methods is coherent.

END OF PART VI
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Minimal Take-Home Message

“All uncertainty is of one kind” ~ Phil Dawid. J

Download link: oates.work/dobbiaco
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