Part VI

History of Probabilistic Numerical Methods

Bayesian Solution of Ordinary Differential Equations

J. SKILLING, Cambridge University.

In: Maximum Entropy and Bayesian Methods, Springer Netherlands, 23-37, 1992.

In the numerical solution of ordinary differential equations, a function $y(x)$ is to be reconstructed from knowledge of the functional form of its derivative: $d y / d x=f(x, y)$, together with an appropriate boundary condition. The derivative f is evaluated at a sequence of suitably chosen points $\left(x_{k}, y_{k}\right)$, from which the form of $y(\cdot)$ is estimated. This is an inference problem, which can and perhaps should be treated by Bayesian techniques. As always, the inference appears as a probability distribution $\operatorname{prob}(y(\cdot))$, from which random samples show the probabilistic reliability of the results.

History of Probabilistic Numerical Methods

Bayesian Solution of Ordinary Differential Equations

J. SKILLING, Cambridge University.

In: Maximum Entropy and Bayesian Methods, Springer Netherlands, 23-37, 1992.

In the numerical solution of ordinary differential equations, a function $y(x)$ is to be reconstructed from knowledge of the functional form of its derivative: $d y / d x=f(x, y)$, together with an appropriate boundary condition. The derivative f is evaluated at a sequence of suitably chosen points $\left(x_{k}, y_{k}\right)$, from which the form of $y(\cdot)$ is estimated. This is an inference problem, which can and perhaps should be treated by Bayesian techniques. As always, the inference appears as a probability distribution $\operatorname{prob}(y(\cdot))$, from which random samples show the probabilistic reliability of the results.

Twelfth Job: Introduction to Graphical Models

Recall Our Motivation: Computational Pipelines

Numerical analysis for the "drag and drop" era of computational pipelines:

| Summary | nian |
| :--- | :--- | :--- | :--- |

Flow - btodiminde_now_seo_upater-38:

[Fig: IBM High Performance Computation]
The sophistication and scale of modern computer models creates an urgent need to better understand the propagation and accumulation of numerical error within arbitrary - often large - pipelines of computation, so that "numerical risk" to end-users can be controlled.

[^0]
Recall Our Motivation: Computational Pipelines

Numerical analysis for the "drag and drop" era of computational pipelines:

[Fig: IBM High Performance Computation]
The sophistication and scale of modern computer models creates an urgent need to better understand the propagation and accumulation of numerical error within arbitrary - often large - pipelines of computation, so that "numerical risk" to end-users can be controlled.
\Longrightarrow Need to consider graphical representations of computation.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

Recall: X is C.I. of Y given $Z \leftrightarrow X \Perp Y \mid Z \leftrightarrow p_{X, Y \mid Z}(x, y)=p_{X \mid Z}(x) p_{Y \mid Z}(y)$

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are io intly Gaussian
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

```
Recall: \(X\) is C.I. of \(Y\) given \(Z\) \(\square\)
```

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are jo intly Gaussian
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

Recall: X is C.I. of Y given $Z \leftrightarrow X \Perp Y \mid Z$ \square

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are jointly Gaussian
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{\nu} \backslash\left\{v_{1}, v_{2}\right\}}$

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

$$
\text { Recall: } X \text { is C.I. of } Y \text { given } Z \leftrightarrow X \Perp Y \mid Z \leftrightarrow p_{X, Y \mid Z}(x, y)=p_{X \mid Z}(x) p_{Y \mid Z}(y)
$$

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are jointly Gaussian
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{.}\right\}$., v, are iointly Gaussian
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$

> Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are jointly Gaussian.
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$.
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Graphical Models in Statistics

A probabilistic graphical model comprises of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with vertex set $\mathcal{V}=\left\{v_{1}, \ldots, v_{p}\right\}$ and edge set $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$.
- Semantics that associate the graph to statements about conditional (in)dependence of random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$.

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

- The random variables $\left\{X_{v}\right\}_{v \in \mathcal{V}}$ are jointly Gaussian.
- The edges are undirected (i.e. $(i, j) \in \mathcal{E}$ iff $(j, i) \in \mathcal{E})$.
- Two vertices v_{1} and v_{2} are not connected by an edge iff $X_{v_{1}} \Perp X_{v_{2}} \mid X_{\mathcal{V} \backslash\left\{v_{1}, v_{2}\right\}}$.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity structure of the associated precision matrix.

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$.

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by ang $(Q \cup R \cup S)$
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by ang $(Q \cup R \cup S)$
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by ang $(Q \cup R \cup S)$
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by ang $(Q \cup R \cup S)$.
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}
- Remove all arrowheads in $G^{\prime \prime}$ to ohtain an undirected "moral" graph G.
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S.

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by $\operatorname{an}_{\mathcal{G}}(Q \cup R \cup S)$.
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$
- Check that all naths from vertices in Q to vertices in R in Q nass through a vertex in S.

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by $\mathrm{an}_{\mathcal{G}}(Q \cup R \cup S)$.
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}.
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S.

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by $\mathrm{an}_{\mathcal{G}}(Q \cup R \cup S)$.
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}.
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$.
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S.

Bayesian Network

Example: In a Bayesian network:

- The edges are directed (i.e. $(i, j) \in \mathcal{E} \Longrightarrow(j, i) \notin \mathcal{E})$.
- No directed cycles exist (in particular, $(i, i) \notin \mathcal{E})$.
- Two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff $X_{Q} \Perp X_{R} \mid X_{S}$. ("global Markov property")

Let $\operatorname{an}_{\mathcal{G}}(S)$ denote the ancestors of the set S in \mathcal{G}. (NB: This includes S itself.)

Given a directed, acyclic graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, we say that two sets $Q, R \subseteq \mathcal{V}$ are d-separated by a set $S \subseteq \mathcal{V} \backslash Q \cup R$ iff the following holds:

- Form \mathcal{G}^{\prime}, the subgraph induced by $\mathrm{an}_{\mathcal{G}}(Q \cup R \cup S)$.
- Form $\mathcal{G}^{\prime \prime}$ by connecting any un-connected parents (with an undirected edge) in \mathcal{G}^{\prime}.
- Remove all arrowheads in $\mathcal{G}^{\prime \prime}$, to obtain an undirected "moral" graph $\mathcal{G}_{\text {moral }}$.
- Check that all paths from vertices in Q to vertices in R in $\mathcal{G}_{\text {moral }}$ pass through a vertex in S.

Exercise: Is Vent-sys d-separated from HTPS?

Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;

$$
X_{v} \Perp X_{\mathrm{Nd}(v) \backslash \mathrm{Pa}(v)} \mid X_{\mathrm{Pa}(v)}
$$

where, according to the graph \mathcal{G},

- $\operatorname{Nd}(v)$ are the non-descendants of $v \in \mathcal{V}$
- $\mathrm{Pa}(v)$ are the parents of $v \in \mathcal{V}$.

Message: "Only immediate parents matter"

Practically important, as it allows local verification of the global Markov property.

Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;

$$
X_{v} \Perp X_{\mathrm{Nd}(v) \backslash \mathrm{Pa}(v)} \mid X_{\mathrm{Pa}(v)}
$$

where, according to the graph \mathcal{G},

- $\operatorname{Nd}(v)$ are the non-descendants of $v \in \mathcal{V}$
- $\mathrm{Pa}(v)$ are the parents of $v \in \mathcal{V}$.

Message: "Only immediate parents matter".

Practically important, as it allows local verification of the global Markov property.

Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;

$$
X_{v} \Perp X_{\mathrm{Nd}(v) \backslash \mathrm{Pa}(v)} \mid X_{\mathrm{Pa}(v)}
$$

where, according to the graph \mathcal{G},

- $\operatorname{Nd}(v)$ are the non-descendants of $v \in \mathcal{V}$
- $\mathrm{Pa}(v)$ are the parents of $v \in \mathcal{V}$.

Message: "Only immediate parents matter".

Practically important, as it allows local verification of the global Markov property.

Computational Work-Flows

Is there a connection to computation?

[Image from Li Haoyi's blog]

Computational Work-Flows

In particular, is there a connection to functional programming?

[Image from Li Haoyi's blog]

Computational Work-Flows

Or a connection to grid or cloud computing?

Thirteenth Job: Pipelines of Computation

Example: Split Integration

Consider estimation of the integral

$$
\int_{0}^{1} x(t) \mathrm{d} t
$$

with a Bayesian probabilistic numerical method (Bayesian quadrature), based on the information $\left\{x\left(t_{1}\right), \ldots, x\left(t_{2 m}\right)\right\}$, where $t_{1}=0, t_{m}=0.5, t_{2 m}=1$.

Under what circumstances can this computation be partitioned into two independent

 sub-computations?

Example: Split Integration

Consider estimation of the integral

$$
\int_{0}^{1} x(t) \mathrm{d} t
$$

with a Bayesian probabilistic numerical method (Bayesian quadrature), based on the information $\left\{x\left(t_{1}\right), \ldots, x\left(t_{2 m}\right)\right\}$, where $t_{1}=0, t_{m}=0.5, t_{2 m}=1$.

Under what circumstances can this computation be partitioned into two independent sub-computations?

$$
\int_{0}^{1} u(x) \mathrm{d} x=\int_{0}^{0.5} u(x) \mathrm{d} x+\int_{0.5}^{1} u(x) \mathrm{d} x
$$

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes \square.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in \{1,
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) \mathrm{d} t$.

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes $\boldsymbol{\square}$.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in $\{1$,
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) d t$

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes \square.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in $\{1$,
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) d t$

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes $\boldsymbol{\square}$.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$.
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in $\{1, \ldots, m(i)\}$
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) d t$

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes $\boldsymbol{\square}$.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$.
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in $\{1, \ldots, m(i)\}$.
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) \mathrm{d} t$

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

- Nodes are of two kinds: Information nodes \square, and method nodes $\boldsymbol{\square}$.
- The graph is bipartite, so that edges connect a method node to an information node or vice-versa. That is, edges are of the form $\square \rightarrow \square$ or $\square \rightarrow \square$.
- There are in general n method nodes, each with a unique label in $\{1, \ldots, n\}$.
- The method node labelled i has $m(i)$ parents and one child. Its in-edges are assigned a unique label in $\{1, \ldots, m(i)\}$.
- There is a unique terminal node and it is the child of method node n. This represents the principal quantity of interest $Q(x)=\int_{0}^{1} x(t) \mathrm{d} t$.

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

Let

- M_{1} be Bayesian quadrature for $\int_{0}^{0.5} x(t) \mathrm{d} t$.
- M_{2} be Bayesian quadrature for $\int_{0.5}^{1} x(t) \mathrm{d} t$.
- M_{3} be the trivial probabilistic numerical method that adds its two inputs..

Example: Split Integration

Let's attempt to represent this with a graphical model, which we will call a pipeline:

Q: When is the output of the pipeline Bayesian?
I.e. When does the output of the pipeline coincide with standard Bayesian quadrature performed on the full information $\left\{x\left(t_{1}\right), \ldots, x\left(t_{2 m}\right)\right\}$?

Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

Pipeline

If we restrict attention to Bayesian probabilistic numerical methods, then M_{1}, M_{2} and M_{3} are uniquely determined by the prior distribution P_{x} for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.
Starting to look like a Bayesian network.

Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

If we restrict attention to Bayesian probabilistic numerical methods, then M_{1}, M_{2} and M_{3} are uniquely determined by the prior distribution P_{x} for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.
Starting to look like a Bayesian network.

Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

If we restrict attention to Bayesian probabilistic numerical methods, then M_{1}, M_{2} and M_{3} are uniquely determined by the prior distribution P_{x} for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.
Starting to look like a Bayesian network.

Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

If we restrict attention to Bayesian probabilistic numerical methods, then M_{1}, M_{2} and M_{3} are uniquely determined by the prior distribution P_{x} for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.
Starting to look like a Bayesian network...

Coherence

Associate each node i with a random variable X_{i}.
e.g. $X_{1}=\left\{x\left(t_{1}\right), \ldots, x\left(t_{m-1}\right)\right\}, X_{4}=\int_{0}^{0.5} x(t) \mathrm{d} t$.

A prior P_{x} is coherent for the dependency graph if each $X_{i} \Perp X_{\mathrm{Nd}(i) \backslash \mathrm{Pa}(i)} \mid X_{\mathrm{Pa}(i)}$.

Coherence

Associate each node i with a random variable X_{i}.
e.g. $X_{1}=\left\{x\left(t_{1}\right), \ldots, x\left(t_{m-1}\right)\right\}, X_{4}=\int_{0}^{0.5} x(t) \mathrm{d} t$.

A prior P_{X} is coherent for the dependency graph if each $X_{i} \Perp X_{\mathrm{Nd}(i) \backslash \mathrm{Pa}(i)} \mid X_{\mathrm{Pa}(i)}$.

Split Integration: Coherence

> Thus in this instance we would ask whether $\int_{0.5}^{1} x(t) \mathrm{d} t$ is independent of $x\left(t_{1}\right), \ldots, x\left(t_{m-1}\right)$ given $x\left(t_{m}\right), \ldots, x\left(t_{2 m}\right)$?

This is not true in general, but sometimes hold's - e.g. a Wiener process prior P_{x}

Split Integration: Coherence

Thus in this instance we would ask whether $\int_{0.5}^{1} x(t) \mathrm{d} t$ is independent of $x\left(t_{1}\right), \ldots, x\left(t_{m-1}\right)$ given $x\left(t_{m}\right), \ldots, x\left(t_{2 m}\right)$?

This is not true in general, but sometimes holds - e.g. a Wiener process prior P_{X}

Split Integration: Coherence

Thus in this instance we would ask whether $\int_{0.5}^{1} x(t) \mathrm{d} t$ is independent of $x\left(t_{1}\right), \ldots, x\left(t_{m-1}\right)$ given $x\left(t_{m}\right), \ldots, x\left(t_{2 m}\right)$?

This is not true in general, but sometimes holds - e.g. a Wiener process prior P_{x}.

Bayesian Pipelines

The process illustrated here can be made formal:
A pipeline is Bayesian for estimation of its output if:
(1) The prior P_{x} is coherent for the dependency graph associated to the pipeline.
(2) The methods M_{i} are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian probabilistic numerical methods?

Point for Discussion: How to do split integration in $d \geq 2$ dimensions?

Bayesian Pipelines

The process illustrated here can be made formal:
A pipeline is Bayesian for estimation of its output if:
(1) The prior P_{x} is coherent for the dependency graph associated to the pipeline.
(2) The methods M_{i} are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian probabilistic numerical methods?

Point for Discussion: How to do split integration in $d \geq 2$ dimensions?

Bayesian Pipelines

The process illustrated here can be made formal:
A pipeline is Bayesian for estimation of its output if:
(1) The prior P_{x} is coherent for the dependency graph associated to the pipeline.
(2) The methods M_{i} are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian probabilistic numerical methods?

Point for Discussion: How to do split integration in $d \geq 2$ dimensions?

Conclusion

In Part VI it has been argued that:

- Computational work-flow can be related to graphical models used in statistical applications.
- Bayesian probabilistic numerical methods induce a joint distribution over unknown objects, whose conditional (in)dependence structure can be represented with a pipeline graph.
- The local Markov property can be used to check whether a large pipeline of Bayesian probabilistic numerical methods is coherent.

END OF PART VI

Conclusion

In Part VI it has been argued that:

- Computational work-flow can be related to graphical models used in statistical applications.
- Bayesian probabilistic numerical methods induce a joint distribution over unknown objects, whose conditional (in)dependence structure can be represented with a pipeline graph.
- The local Markov property can be used to check whether a large pipeline of Bayesian probabilistic numerical methods is coherent.

END OF PART VI

Conclusion

In Part VI it has been argued that:

- Computational work-flow can be related to graphical models used in statistical applications.
- Bayesian probabilistic numerical methods induce a joint distribution over unknown objects, whose conditional (in)dependence structure can be represented with a pipeline graph.
- The local Markov property can be used to check whether a large pipeline of Bayesian probabilistic numerical methods is coherent.

END OF PART VI

Conclusion

In Part VI it has been argued that:

- Computational work-flow can be related to graphical models used in statistical applications.
- Bayesian probabilistic numerical methods induce a joint distribution over unknown objects, whose conditional (in)dependence structure can be represented with a pipeline graph.
- The local Markov property can be used to check whether a large pipeline of Bayesian probabilistic numerical methods is coherent.

END OF PART VI

Conclusion

In Part VI it has been argued that:

- Computational work-flow can be related to graphical models used in statistical applications.
- Bayesian probabilistic numerical methods induce a joint distribution over unknown objects, whose conditional (in)dependence structure can be represented with a pipeline graph.
- The local Markov property can be used to check whether a large pipeline of Bayesian probabilistic numerical methods is coherent.

END OF PART VI

Minimal Take-Home Message

"All uncertainty is of one kind" ~ Phil Dawid.

Download link: oates.work/dobbiaco

References I

J. Chang and D. Pollard. Conditioning as disintegration. Statistica Neerlandica, 51(3):287-317, 1997.
I. Cialenco, G. E. Fasshauer, and Q. Ye. Approximation of stochastic partial differential equations by a kernel-based collocation method. International Journal of Computer Mathematics, 89 (18):2543-2561, 2012.
J. Cockayne, C. Oates, T. J. Sullivan, and M. Girolami. Probabilistic meshless methods for partial differential equations and Bayesian inverse problems, 2016. arXiv:1605.07811v1.
J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. Bayesian probabilistic numerical methods. arXiv:1702.03673, 2017.
P. R. Conrad, M. Girolami, S. Särkkä, A. M. Stuart, and K. C. Zygalakis. Statistical analysis of differential equations: introducing probability measures on numerical solutions. Statistics and Computing, 2016.
S. L. Cotter, G. O. Roberts, A. M. Stuart, D. White, et al. Mcmc methods for functions: modifying old algorithms to make them faster. Statistical Science, 28(3):424-446, 2013.
T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini. Likelihood-informed dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11):114015, 2014.
C. Dellacherie and P. Meyer. Probabilities and Potential. North-Holland, Amsterdam, 1978.
T. E. Hull and J. R. Swenson. Tests of probabilistic models for propagation of roundoff errors. Communications of the ACM, 9(2):108-113, 1966.

References II

D. Isaacson, J. L. Mueller, J. C. Newell, and S. Siltanen. Reconstructions of chest phantoms by the d-bar method for electrical impedance tomography. IEEE Transactions on Medical Imaging, 23(7):821-828, 2004.
J. B. Kadane and G. W. Wasilkowski. Bayesian Statistics, chapter Average Case ϵ-Complexity in Computer Science: A Bayesian View, pages 361-374. Elsevier, North-Holland, 1985.
A. N. Kolmogorov. Foundations of Probability. 1933.
C. Ley, G. Reinert, Y. Swan, et al. Stein's method for comparison of univariate distributions. Probability Surveys, 14:1-52, 2017.
C. Oates, S. Niederer, A. Lee, F. Briol, and M. Girolami. Probabilistic models for integration error in assessment of functional cardiac models. arXiv:1606.06841, 2017.
C. J. Oates, J. Cockayne, and R. G. Aykroyd. Bayesian probabilistic numerical methods for industrial process monitoring. In preparation, 2016a.
C. J. Oates, J. Cockayne, F.-X. Briol, and M. Girolami. Convergence rates for a class of estimators based on stein's identity. arXiv:1603.03220, 2016b.
H. Owhadi. Bayesian numerical homogenization. Multiscale Modeling \& Simulation, 13(3): 812-828, 2015.
S. Särkkä. Linear operators and stochastic partial differential equations in gaussian process regression. Artificial Neural Networks and Machine Learning-ICANN 2011, pages 151-158, 2011.
A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451-559, May 2010.

References III

T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors, 2016. arXiv:1605.05898.
B. Szabó, A. van der Vaart, J. van Zanten, et al. Frequentist coverage of adaptive nonparametric bayesian credible sets. The Annals of Statistics, 43(4):1391-1428, 2015.
H. Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.

[^0]: \Longrightarrow Need to consider graphical representations of computation.

