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History of Probabilistic Numerical Methods

Bayesian Solution of Ordinary Differential Equations

J. SKILLING, Cambridge University.

In: Maximum Entropy and Bayesian Methods, Springer
Netherlands, 23-37, 1992.

In the numerical solution of ordinary differen-
tial equations, a function y(x) is to be recon-
structed from knowledge of the functional form
of its derivative: dy/dx = f (x , y), together with
an appropriate boundary condition. The deriva-
tive f is evaluated at a sequence of suitably cho-
sen points (xk , yk), from which the form of y(·)
is estimated. This is an inference problem, which
can and perhaps should be treated by Bayesian
techniques. As always, the inference appears as
a probability distribution prob(y(·)), from which
random samples show the probabilistic reliability
of the results.
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Twelfth Job: Introduction to Graphical Models
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Recall Our Motivation: Computational Pipelines

Numerical analysis for the “drag and drop” era of computational pipelines:

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.

=⇒ Need to consider graphical representations of computation.
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Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

Recall: X is C.I. of Y given Z ↔ X ⊥⊥ Y |Z ↔ pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y)

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

Recall: X is C.I. of Y given Z ↔ X ⊥⊥ Y |Z ↔ pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y)

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

Recall: X is C.I. of Y given Z ↔ X ⊥⊥ Y |Z ↔ pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y)

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

Recall: X is C.I. of Y given Z ↔ X ⊥⊥ Y |Z ↔ pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y)

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Graphical Models in Statistics

A probabilistic graphical model comprises of:

A graph G = (V, E), with vertex set V = {v1, . . . , vp} and edge set E ⊆ V × V.

Semantics that associate the graph to statements about conditional (in)dependence
of random variables {Xv}v∈V .

NB: More complicated graphical structures have also been developed.

Example: In a Gaussian graphical model:

The random variables {Xv}v∈V are jointly Gaussian.

The edges are undirected (i.e. (i , j) ∈ E iff (j , i) ∈ E).

Two vertices v1 and v2 are not connected by an edge iff Xv1 ⊥⊥ Xv2 |XV\{v1,v2}.

Fact: The edge structure of a Gaussian graphical model characterises the sparsity
structure of the associated precision matrix.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 166 / 184



Bayesian Network

Example: In a Bayesian network:

The edges are directed (i.e. (i , j) ∈ E =⇒ (j , i) /∈ E).

No directed cycles exist (in particular, (i , i) /∈ E).

Two sets Q,R ⊆ V are d-separated by a set S ⊆ V \ Q ∪ R iff XQ ⊥⊥ XR |XS .
(“global Markov property”)

Let anG(S) denote the ancestors of the set S in G. (NB: This includes S itself.)

Given a directed, acyclic graph G = (V, E), we say that two sets Q,R ⊆ V are
d-separated by a set S ⊆ V \ Q ∪ R iff the following holds:

Form G′, the subgraph induced by anG(Q ∪ R ∪ S).

Form G′′ by connecting any un-connected parents (with an undirected edge) in G′.
Remove all arrowheads in G′′, to obtain an undirected “moral” graph Gmoral.

Check that all paths from vertices in Q to vertices in R in Gmoral pass through a
vertex in S .
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Exercise: Is Vent-sys d-separated from HTPS?
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Local Markov Property for Bayesian Networks

Local Markov Property

For a Bayesian network;
Xv ⊥⊥ XNd(v)\Pa(v)|XPa(v)

where, according to the graph G,

Nd(v) are the non-descendants of v ∈ V
Pa(v) are the parents of v ∈ V.

Message: “Only immediate parents matter”.

Practically important, as it allows local verification of the global Markov property.
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Computational Work-Flows

Is there a connection to computation?

[Image from Li Haoyi’s blog]
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Computational Work-Flows

In particular, is there a connection to functional programming?

[Image from Li Haoyi’s blog]
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Computational Work-Flows

Or a connection to grid or cloud computing?
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Thirteenth Job: Pipelines of Computation
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Example: Split Integration

Consider estimation of the integral ∫ 1

0

x(t)dt

with a Bayesian probabilistic numerical method (Bayesian quadrature), based on the
information {x(t1), . . . , x(t2m)}, where t1 = 0, tm = 0.5, t2m = 1.

Under what circumstances can this computation be partitioned into two independent
sub-computations? ∫ 1

0

u(x)dx =

∫ 0.5

0

u(x)dx +

∫ 1

0.5

u(x)dx
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Example: Split Integration

Let’s attempt to represent this with a graphical model, which we will call a pipeline:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

M1

M2

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

M3

∫ 1

0
x(t)dt

Nodes are of two kinds: Information nodes �, and method nodes �.

The graph is bipartite, so that edges connect a method node to an information node
or vice-versa. That is, edges are of the form �→ � or �→ �.

There are in general n method nodes, each with a unique label in {1, . . . , n}.
The method node labelled i has m(i) parents and one child. Its in-edges are
assigned a unique label in {1, . . . ,m(i)}.
There is a unique terminal node and it is the child of method node n. This
represents the principal quantity of interest Q(x) =

∫ 1

0
x(t)dt.
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Let’s attempt to represent this with a graphical model, which we will call a pipeline:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

M1

M2

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

M3

∫ 1

0
x(t)dt

Let

M1 be Bayesian quadrature for
∫ 0.5

0
x(t)dt.

M2 be Bayesian quadrature for
∫ 1

0.5
x(t)dt.

M3 be the trivial probabilistic numerical method that adds its two inputs..
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Q: When is the output of the pipeline Bayesian?

I.e. When does the output of the pipeline coincide with standard Bayesian quadrature
performed on the full information {x(t1), . . . , x(t2m)}?
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Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

M1

M2

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

M3

∫ 1

0
x(t)dt

Pipeline

If we restrict attention to Bayesian probabilistic numerical methods, then M1, M2 and M3

are uniquely determined by the prior distribution Px for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.

Starting to look like a Bayesian network...

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 176 / 184



Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

∫ 1

0
x(t)dt

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M1, M2 and M3

are uniquely determined by the prior distribution Px for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.

Starting to look like a Bayesian network...

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 176 / 184



Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

∫ 1

0
x(t)dt

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M1, M2 and M3

are uniquely determined by the prior distribution Px for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.

Starting to look like a Bayesian network...

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 176 / 184



Dependency Graphs

The abstract structure of the graph allows us to give a rigorous answer:

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

∫ 1

0
x(t)dt

Dependency Graph

If we restrict attention to Bayesian probabilistic numerical methods, then M1, M2 and M3

are uniquely determined by the prior distribution Px for the integrand.

So we can delete the method nodes to obtain the dependency graph of a pipeline.

Starting to look like a Bayesian network...

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 176 / 184



Coherence

1

2

3

4

5

6

Associate each node i with a random variable Xi .

e.g. X1 = {x(t1), . . . , x(tm−1)}, X4 =
∫ 0.5

0
x(t)dt.

A prior Px is coherent for the dependency graph if each Xi ⊥⊥ XNd(i)\Pa(i) | XPa(i).
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Split Integration: Coherence

x(t1), . . . , x(tm−1)

x(tm)

x(tm+1), . . . , x(t2m)

M1

M2

∫ 0.5

0
x(t)dt

∫ 1

0.5
x(t)dt

M3

∫ 1

0
x(t)dt

Thus in this instance we would ask whether
∫ 1

0.5
x(t)dt is independent of

x(t1), . . . , x(tm−1) given x(tm), . . . , x(t2m)?

This is not true in general, but sometimes holds - e.g. a Wiener process prior Px .
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Bayesian Pipelines

The process illustrated here can be made formal:

A pipeline is Bayesian for estimation of its output if:

1 The prior Px is coherent for the dependency graph associated to the pipeline.

2 The methods Mi are Bayesian probabilistic numerical methods.

Open Question: Can a similar notion of coherence be developed for non-Bayesian
probabilistic numerical methods?

Point for Discussion: How to do split integration in d ≥ 2 dimensions?
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Conclusion

In Part VI it has been argued that:

Computational work-flow can be related to graphical models used in statistical
applications.

Bayesian probabilistic numerical methods induce a joint distribution over unknown
objects, whose conditional (in)dependence structure can be represented with a
pipeline graph.

The local Markov property can be used to check whether a large pipeline of
Bayesian probabilistic numerical methods is coherent.

END OF PART VI
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Minimal Take-Home Message

“All uncertainty is of one kind” ∼ Phil Dawid.

Download link: oates.work/dobbiaco
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