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History of Probabilistic Numerical Methods

Bayesian Numerical Analysis

P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV, 1,
163–175, 1988.

Seeing standard procedures emerge from the
Bayesian approach may convince readers the argu-
ment isn’t so crazy after all. The examples suggest
the following program: Take standard numerical
analysis procedures and see if they are Bayes (or
admissible, or minimax). [...] The Bayesian ap-
proach yields more than the Bayes rule; it yields
a posterior distribution. This can be used to give
confidence sets as in Wahba (1983).
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Tenth Job: Extension to More Challenging Integrals
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Extension to More Challenging Integrals

Three extensions that we will discuss:

1 Integrals over manifolds: ∫
M

x(t)dπ(t)

2 Integrals with densities known up to normalisation:∫
x(t)dπ(t), π̃ ∝ π

3 Integrals with unknown densities:∫
x(t)dπ(t), {ti}ni=1

IID∼ π

In each case the aim is to perform principled Bayesian uncertainty quantification for the
value of the integral Q =

∫
x(t)dπ(t).
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Extension 1: Integrals Over Manifolds

object

𝝎𝒊
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environment map
camera
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Extension 1: Integrals Over Manifolds

Lo(ωo) = Le(ωo) +

∫
S2

Li (ωi )ρ(ωi ,ωo)[ωi · n]+dπ(ωi )

Lo(ωo) = outgoing radiance

Le(ωo) = amount of light emitted by the object itself

Li (ωi ) = amount of light reaching object from direction ωi

ρ = bidirectional reflectance distribution function

π = uniform distribution on S2

To be computed

for each pixel, and

for each RGB channel.
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Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S2 → R.

One such kernel, that leads to a Sobolev space of smoothness 3
2

on S2:

k(t, t′) =
8

3
− ‖t − t′‖2 for all t, t′ ∈ S2.
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Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S2 → R.

One such kernel, that leads to a Sobolev space of smoothness 3
2

on S2:

k(t, t′) =
8

3
− ‖t − t′‖2 for all t, t′ ∈ S2.

For a certain spherical t-design {ti}ni=1, a convergence rate of eWCE(M) = O(n−
3
4 ) is

achieved by the method M = (A, b) where b is the Bayesian Quadrature posterior mean -
and this is worst-case optimal:
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Extension 1: Integrals Over Manifolds

Full uncertainty quantification for integrals on manifolds:
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Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation∫
x(t)dπ(t), π̃ ∝ π

occur in applications of Bayesian statistical methods:

p(params|data) =
p(data|params) p(params)∫
p(data|params) dp(params)

← π̃
← unknown (∗)

Cannot compute with Bayesian quadrature, since relies on the following integrals having
a closed form: ∫

k(·, t)dπ(t),

∫∫
k(t, t′)d(π × π)(t × t′) (∗∗)

MCMC? Compute the denominator (∗) with Bayesian Quadrature first?

To address these problems we will instead go to some effort to force (∗∗) to have a
closed form... via Stein’s Method.
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A Brief History of Stein
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A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X1,X2, . . . is a stationary sequence of random variables.

Choose A,B ⊂ N such that inf i∈A,j∈B |i − j | ≥ k.

Choose arbitrary functions Y ≡ Y (XA), Z ≡ Z(XB).

Assume that there exists αk such that, for all such choices, |Corr(Y ,Z)| ≤ αk .

Assume that, for k sufficiently large, αk ≤ e−λk .

Then ∣∣∣∣P [ ∑n
i=1 Xi

(V(
∑n

i=1 Xi ))1/2
≤ a

]
− Φ(a)

∣∣∣∣ = O(n−1/2).

A specific approach that led to some general methods for bounding the distance d(π′, π)
between two distributions π, π′.
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A Brief History of Stein

“I regret that, in order to complete this paper in time for publication, I have
been forced to submit it with many defects remaining. In particular the proof of
the concrete results of Section 3 is somewhat incomplete.”
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Stein’s Method: A Modern Retrospective

The essence of Stein’s method is most clearly distilled in Ley et al. [2017]:

A p.d.f. π is characterised by the pair (S,F), consisting of a Stein Operator S and a
Stein Class F , if it holds that

X ∼ π iff E[Sf (X )] = 0 ∀f ∈ F .

Example 1 (Stein, 1972)

π is the p.d.f. for N(µ, σ2)

S : f 7→ ∇(f π)/π

F = {f : R→ R s.t. f π ∈W 1,1 and limt↘−∞ f (t)π(t) = limt↗+∞ f (t)π(t)}.
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Extension 2: Unknown Normalisation Constant

Our aim is to build a kernel k for which∫
D

k(·, t)dπ(t) = 0

∫∫
D×D

k(t, t′)d(π × π)(t × t′) = 0

each have a (trivial) closed form, via Stein’s method.

The kernel k will be associated with a RKHS of functions - this will be the set SF - that
can be used within the Bayesian Quadrature method.

Full details in Oates et al. [2016a].
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Extension 2: Unknown Normalisation Constant

Let S : f 7→ ∇(f π)/π and let F be an RKHS with kernel kF .

Then (if kF is sufficiently regular) the set SF can be endowed with RKHS structure,
with kernel:

k(t, t′) = StSt′kF (t, t′) = ∇t · ∇t′kF (t, t′) +
∇tπ(t)

π(t)
· ∇t′kF (t, t′)

+
∇t′π(t′)

π(t′)
· ∇tkF (t, t′) +

∇tπ(t)

π(t)
· ∇t′π(t′)

π(t′)
kF (t, t′).

Note that k can be computed from π̃! Moreover,∫
D

k(·, t)dπ(t) =

∫
D

S·StkF (·, t)dπ(t)

= S·
∫
D

StkF (·, t)dπ(t)

= S·
∮
∂D

kF (·, t) · n(t)dπ(t)
kF “suff. reg.”

= S·0 = 0

Detail: The kernel 1 + k(t, t′) is actually used for Bayesian Quadrature (to catch
mean-shift).
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Extension 2: Unknown Normalisation Constant

Suppose {ti}ni=1 arise from a Markov chain that targets π.

Assume D is bounded.

Assume π is bounded away from 0 on D.

Assume π ∈ C 2a+1(D) and kF ∈ C 2b+2(D × D).

Assume kF is “sufficiently regular”.

Assume the Markov chain is uniformly ergodic.

Then, for x ∈ SF , there exists h0 > 0 such that

1h<h0

∫ x(t)dπ(t)− b(a)︸︷︷︸
BQ estimator


2

= O
(
n−1− 2(a∧b)

d
+ε),

for arbitrary ε > 0. Here h is the fill distance of {ti}ni=1.

Full details in Oates et al. [2016b].
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Extension 2: Unknown Normalisation Constant

Consider again Darcy’s PDE

∇t · [c(t;θ)∇tx(t)] = 0 if t1, t2 ∈ (0, 1)

x(t) =

{
t1 if t2 = 0
1− t1 if t2 = 1

∇t1x(t) = 0 if t1 ∈ {0, 1},

Data are a grid of observations yi,j = x(ti,j) + εi,j and IID εi,j ∼ N(0, σ2). The field c is
endowed with a prior

log c(t;θ) =
d∑

i=1

θici (t),

where θ ∼ Unif(D), D = (−10, 10)d and ci are orthonormal.

Aim: Estimate the posterior mean of the parameter θ.

Approach: Bayesian Probabilistic Numerical Method for the likelihood Ln(θ; y) (to avoid
exact solution of the PDE), followed by Stein’s method for integration with respect to
π(θ) ∝ Ln(θ; y).
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Extension 2: Unknown Normalisation Constant

Performance of Bayesian Quadrature (via Stein’s method) for estimation of
∫
θ1dπ(θ):
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Stein Control Functionals

Here m is the number of PDE forward-solves used.
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Extension 3: Unknown p.d.f. π

Of course, knowing π̃ is mathematically equivalent to knowing π.

Consider now the situation where ti ∼ π are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. π as unknown objects:

x ∼ GP (Gaussian process model - standard BQ)

π(t) =
∫
ψ(t;ϕ)P(dϕ) (hierarchical mixture model)

P ∼ DP(α,P0) (Dirichlet process model)
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π(t) =
∫
ψ(t;ϕ)P(dϕ) (hierarchical mixture model)

P ∼ DP(α,P0) (Dirichlet process model)

Recall: P ∼ DP(α,P0) iff (P(B1), . . . ,P(Bm)) ∼ Dir(αP0(B1), . . . , αP0(Bm))
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x ∼ GP (Gaussian process model - standard BQ)

π(t) =
∫
ψ(t;ϕ)P(dϕ) (hierarchical mixture model)

P ∼ DP(α,P0) (Dirichlet process model)

Then condition x on data {(ti , x(ti ))}ni=1 and condition π on data {ti}ni=1.

This implies to a posterior distribution over the integral
∫
x(t)dπ(t) that accounts for

uncertainty regarding both x and π.
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Motivation: Assessment of Cardiac Models
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Extension 3: Unknown p.d.f. π

Suppose that:

x belongs to the RKHS associated to a kernel k, bounded on D × D, D ⊂ R.

π(·) is a location-scale mixture of Gaussians; ψ(·;ϕ) = N(·;ϕ1, ϕ2).

Technical conditions on the Dirichlet process:
ϕ1 ∈ R and ϕ2 ∈ [σ, σ] for fixed σ, σ ∈ (0,∞).
P, the true mixing distribution, has compact supp(P) ⊂ R× (σ, σ).
P0 has positive and continuous density on a rectangle R such that
supp(P0) ⊆ R ⊆ R× [σ, σ].
P0 satisfies the tail condition P0({(ϕ1, ϕ2) : |ϕ1| > t}) ≤ c exp(−b|t|δ) for all t > 0.

Then the posterior distribution over the unknown value of the integral converges to the
truth in Wasserstein metric at the rate

OP(n−1/4+ε).

(Recall: dWass =
∫
|θ − θ0|pn(θ)dθ where θ0 is the true value of θ.)
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Extension 3: Unknown p.d.f. π

Value of the Integral
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(a) n = 10 (b) n = 100

(Implementation is straight-forward with a stick-breaking construction.
Exploits well-known conjugacy results for DP mixture models; Oates et al. [2017].)
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Eleventh Job: Non-Bayesian Methods?

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 157 / 183



Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real
number

x = 0.a1a2a3a4 . . . ∈ [0, 1]

in a truncated form
x̂ = 0.a1a2a3a4 . . . an,

is such that the error e = x − x̂ can be reasonably modelled by a uniform random variable

e ∼ Unif(−5× 10−(n+1), 5× 10−(n+1)).

This implies a distribution over the unknown value of x .

The proposal of Hull and Swenson [1966] and others was to replace the last digit an, in
each stored number that arises in the numerical solution of an ODE, with a uniformly
chosen element of {0, . . . , 9}.

NB: This work focused on rounding error, rather than e.g. the (time) discretisation error
that is intrinsic to numerical ODE solvers; this could reflect the limited precision
arithmetic that was available from the computer hardware of the period.
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Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a
infinite-dimensional object

x(·)

in a discrete form
x̂(·) = a1φ1(·) + · · ·+ amφm(·)

is such that the error e = x − x̂ can be reasonably modelled by a random process, such
as a Gaussian process:

e ∼ GP(0, ke).

This implies a distribution over the unknown value of x .

In particular, when φi are finite elements, we can model

e(·) = a1e1(·) + · · ·+ amem(·)

where ei is a Gaussian process constrained to share the same support as φi and vanish at
nodal points. This enables to “trivial” modification of finite element methods. (i.e.
“Randomise the finite elements”; φi 7→ φi + ei .)

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 159 / 183



Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a
infinite-dimensional object

x(·)

in a discrete form
x̂(·) = a1φ1(·) + · · ·+ amφm(·)

is such that the error e = x − x̂ can be reasonably modelled by a random process, such
as a Gaussian process:

e ∼ GP(0, ke).

This implies a distribution over the unknown value of x .

In particular, when φi are finite elements, we can model

e(·) = a1e1(·) + · · ·+ amem(·)

where ei is a Gaussian process constrained to share the same support as φi and vanish at
nodal points. This enables to “trivial” modification of finite element methods. (i.e.
“Randomise the finite elements”; φi 7→ φi + ei .)

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 159 / 183



Bayesian vs Non-Bayesian

Properties of (some) non-Bayesian methods:

Often trivial modification of classical code, to “inject noise”

Computationally competitive with classical methods

However, simple models for error e can be inappropriate - and controversial

Properties of (some) Bayesian methods:

Statistically well-founded

Coherent framework in which to combine methods (see Part VI)

Computationally very expensive (at the moment)
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Conclusion

In Part V it has been argued that:

Several extensions of Bayesian Quadrature can be developed.

Dirichlet process mixture models are a convenient means to construct a
non-parametric distribution on the space of p.d.f.s π.

Non-Bayesian probabilistic numerical methods have been developed - but are rather
different to Bayesian probabilistic numerical methods (more like a perturbation
analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian
method?

END OF PART V
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