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History of Probabilistic Numerical Methods

Bayesian Numerical Analysis
P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV, 1,
163-175, 1988.

Seeing standard procedures emerge from the
Bayesian approach may convince readers the argu-
ment isn't so crazy after all. The examples suggest
the following program: Take standard numerical
analysis procedures and see if they are Bayes (or
admissible, or minimax). [...] The Bayesian ap-
proach yields more than the Bayes rule; it yields
a posterior distribution. This can be used to give
confidence sets as in Wahba (1983).

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 134 / 183



History of Probabilistic Numerical Methods

Bayesian Numerical Analysis
P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV, 1,
163-175, 1988.

Seeing standard procedures emerge from the
Bayesian approach may convince readers the argu-
ment isn't so crazy after all. The examples suggest
the following program: Take standard numerical
analysis procedures and see if they are Bayes (or
admissible, or minimax). [...] The Bayesian ap-
proach yields more than the Bayes rule; it yields
a posterior distribution. This can be used to give
confidence sets as in Wahba (1983).

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 134 / 183



Tenth Job: Extension to More Challenging Integrals
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Extension to More Challenging Integrals

Three extensions that we will discuss:

@ Integrals over manifolds:

/M x(t)dw(t)

@ Integrals with densities known up to normalisation:

/x(t)dﬂ(t), o

© Integrals with unknown densities:

/x(t)dﬂ'(t), (3, "2
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Extension to More Challenging Integrals

Three extensions that we will discuss:

@ Integrals over manifolds:

/M x(t)dw(t)

@ Integrals with densities known up to normalisation:

/x(t)dﬂ(t), o

© Integrals with unknown densities:

/x(t)dﬂ'(t), (30, 2

In each case the aim is to perform principled Bayesian uncertainty quantification for the
value of the integral Q = [ x(t)dn(t).

Chris. J. Oates
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Extension 1: Integrals Over Manifolds

environment map
camera

LE (wﬂ)

object
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Extension 1: Integrals Over Manifolds

Lo(ws) = Le(wo)+ / Lo, wo)lwi - ] dm(w:)

o L,(wo) = outgoing radiance
Le(wo) =

° amount of light emitted by the object itself
o Li(wi) = amount of light reaching object from direction w;
@ p = bidirectional reflectance distribution function

@ 7 = uniform distribution on S?
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Extension 1: Integrals Over Manifolds

Lo(ws) = Le(wo)+ / Lo, wo)lwi - ] dm(w:)

o L,(wo) = outgoing radiance
Le(wo) =

amount of light emitted by the object itself

Li(w;) = amount of light reaching object from direction w;

p = bidirectional reflectance distribution function

@ 7 = uniform distribution on S?

To be computed
o for each pixel, and

o for each RGB channel.
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Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S* — R.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 139 / 183



Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S* — R.

One such kernel, that leads to a Sobolev space of smoothness % on S%

K(t t) = g = ¥||s for all £, € 2.
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Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions x : S* — R.

One such kernel, that leads to a Sobolev space of smoothness % on S%

K(t t) = g = ¥||s for all £, € 2.

For a certain spherical t-design {t;}7_,, a convergence rate of ewce(M) = O(n_%) is
achieved by the method M = (A, b) where b is the Bayesian Quadrature posterior mean -
and this is worst-case optimal:
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Extension 1: Integrals Over Manifolds

Full uncertainty quantification for integrals on manifolds:

Red Channel o 103 Green Channel Blue Channel

0.022
0.02 0.018
0.018 0.016

0.016 0.014

Integral Estimate

0.014 0.012
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Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

/x(t)dw(t), o
occur in applications of Bayesian statistical methods:

p(data|params) p(params)

dat =
p(params|data) J p(data|params) dp(params)
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Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

/x(t)dw(t), o
occur in applications of Bayesian statistical methods:

p(data|params) p(params) — 7
J p(data|params) dp(params) < unknown ()

p(params|data) =

Cannot compute with Bayesian quadrature, since relies on the following integrals having
a closed form:

/k(-, t)dm(t), // k(t, t)d(m x m)(t x t') (%)
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Cannot compute with Bayesian quadrature, since relies on the following integrals having
a closed form:
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Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

/x(t)dw(t), o
occur in applications of Bayesian statistical methods:

p(data|params) p(params) — 7
J p(data|params) dp(params) < unknown ()

p(params|data) =

Cannot compute with Bayesian quadrature, since relies on the following integrals having
a closed form:

/k(-, t)dm(t), // k(t, t)d(m x m)(t x t') (%)

MCMC? Compute the denominator (x) with Bayesian Quadrature first?

To address these problems we will instead go to some effort to force () to have a
closed form... via Stein's Method.
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A Brief History of Stein

Chris. J. Oates

A BOUND FOR THE ERROR IN THE
NORMAL APPROXIMATION TO THE
DISTRIBUTION OF A SUM OF
DEPENDENT RANDOM VARIABLES

CHARLES STEIN
STANFORD UNIVERSITY
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A Brief History of Stein

Original aim was a central limit theorem for correlated variables:
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Stein, 1972

Suppose Xi, X, ... is a stationary sequence of random variables.
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A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972
Suppose Xi, X, ... is a stationary sequence of random variables.
@ Choose A, B C N such that inficajeg |i — j| > k.
o Choose arbitrary functions Y = Y (Xa), Z = Z(Xg).
@ Assume that there exists ay such that, for all such choices, |Corr(Y, Z)| < a.

o Assume that, for k sufficiently large, ax < g

Then .
}P [m < a} —®(a)

= 0(n"Y?).
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A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972
Suppose Xi, X, ... is a stationary sequence of random variables.
@ Choose A, B C N such that inficajeg |i — j| > k.
o Choose arbitrary functions Y = Y (Xa), Z = Z(Xg).
@ Assume that there exists ay such that, for all such choices, |Corr(Y, Z)| < a.

o Assume that, for k sufficiently large, ax < g

Then R
}]P’ [ Z;:1 Xi

VT w12 49| — — o(n~ 12
(VL Xi)/? = } d(a)| = O( )

A specific approach that led to some general methods for bounding the distance d(7’, )
between two distributions 7, 7’.
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A Brief History of Stein

“I regret that, in order to complete this paper in time for publication, | have
been forced to submit it with many defects remaining. In particular the proof of
the concrete results of Section 3 is somewhat incomplete.”
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Stein's Method: A Modern Retrospective

The essence of Stein's method is most clearly distilled in Ley et al. [2017]:
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The essence of Stein's method is most clearly distilled in Ley et al. [2017]:

A p.d.f. 7 is characterised by the pair (S, F), consisting of a Stein Operator S and a
Stein Class F, if it holds that

X~n iff E[SF(X)]=0 YfeF.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 145 / 183



Stein's Method: A Modern Retrospective

The essence of Stein's method is most clearly distilled in Ley et al. [2017]:

A p.d.f. 7 is characterised by the pair (S, F), consisting of a Stein Operator S and a
Stein Class F, if it holds that

X~n iff E[SF(X)]=0 YfeF.

Example 1 (Stein, 1972)

o 7 is the p.d.f. for N(y,o?)
o S:f— V(fm)/m
o F={f:R—=Rst fre W" and lime, o F(£)m(t) = lime oo F(£)m(t)}.
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Extension 2: Unknown Normalisation Constant

Our aim is to build a kernel k for which
/ k(- t)dn(t) =0 // K(, ¢)d(r x 7)(¢ x ¢') = 0
D DxD

each have a (trivial) closed form, via Stein's method.
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Our aim is to build a kernel k for which
/ k(- t)dn(t) =0 // K(, ¢)d(r x 7)(¢ x ¢') = 0
D DxD

each have a (trivial) closed form, via Stein's method.

The kernel k will be associated with a RKHS of functions - this will be the set SF - that
can be used within the Bayesian Quadrature method.

Full details in Oates et al. [2016a].

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 146 / 183



Extension 2: Unknown Normalisation Constant

Let S: f — V(fn)/m and let F be an RKHS with kernel kz.
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Extension 2: Unknown Normalisation Constant

Let S: f — V(fn)/m and let F be an RKHS with kernel kz.

Then (if kx is sufficiently regular) the set SF can be endowed with RKHS structure,
with kernel:

k(t,t") = S:Sykr(t,t)
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Extension 2: Unknown Normalisation Constant

Let S: f — V(fn)/m and let F be an RKHS with kernel kz.

Then (if kx is sufficiently regular) the set SF can be endowed with RKHS structure,
with kernel:

k(t,t") = S:Spukr(t,t') = Vi -Vekz(t,t')+ v;?t()t) Ve kz(t, t)
Ver(t) Ver(t) Ven(t) "
+—— () - Vekz(t, ) + 1) () kz(t,t).

Note that k can be computed from 7! Moreover,
/ k(- t)dn(t) = /S.Stk}-(-,t)dﬂ'(t)
D D
s / Sekr (-, )dn(t)
D

= S kr (-, t) - n(t)dm(t)

oD
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Extension 2: Unknown Normalisation Constant

Let S: f — V(fn)/m and let F be an RKHS with kernel kz.
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Extension 2: Unknown Normalisation Constant

Let S: f — V(fn)/m and let F be an RKHS with kernel kz.

Then (if kx is sufficiently regular) the set SF can be endowed with RKHS structure,
with kernel:

k(t,t") = S:Spukr(t,t') = Vi -Vekz(t,t')+ v;?t()t) Ve kz(t, t)
Ver(t) Ver(t) Ven(t) "
k .
+—— () - Vikr(t, t') + 1) () F(t, t)
Note that k can be computed from 7! Moreover,
/k(-7t)d7r(t) - /S.Stk}-(-,t)dﬂ'(t)
D D
- s / Sekr (-, )dn(t)
D
kz “suff. reg.”
= S kr (-, t) - n(t)dm(t) = S0 =0

oD

Detail: The kernel 1+ k(t,t") is actually used for Bayesian Quadrature (to catch
mean-shift).
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Extension 2: Unknown Normalisation Constant

Suppose {ti}i_; arise from a Markov chain that targets .
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@ Assume D is bounded.
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Extension 2: Unknown Normalisation Constant

Suppose {ti}i_; arise from a Markov chain that targets .
@ Assume D is bounded.
@ Assume 7 is bounded away from 0 on D.
o Assume 7 € C**™(D) and kr € C*™(D x D).
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Extension 2: Unknown Normalisation Constant

Suppose {ti}i_; arise from a Markov chain that targets .
@ Assume D is bounded.
@ Assume 7 is bounded away from 0 on D.
o Assume 7 € C**™(D) and kr € C*™(D x D).
@ Assume kr is “sufficiently regular”.

@ Assume the Markov chain is uniformly ergodic.
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Extension 2: Unknown Normalisation Constant

Suppose {ti}i_; arise from a Markov chain that targets .
@ Assume D is bounded.
@ Assume 7 is bounded away from 0 on D.
o Assume 7 € C**™(D) and kr € C*™(D x D).
@ Assume kr is “sufficiently regular”.
@ Assume the Markov chain is uniformly ergodic.
Then, for x € SF, there exists hg > 0 such that

2

o | [xO0r) - oa) | = o(r i,

BQ estimator

for arbitrary € > 0. Here h is the fill distance of {t;}7_;.

Full details in Oates et al. [2016b].
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Extension 2: Unknown Normalisation Constant

Consider again Darcy’'s PDE

Ve [e(t:0)Vex(t)] = 0 if t1,t € (0,1)
_ 5} ift,=0
x(t) = { -t ift=1
Vyx(t) = 0 if t; € {0,1},

Data are a grid of observations y; ; = x(ti ;) + ¢;; and IID ¢;; ~ N(0,5°). The field c is
endowed with a prior

log c(t; 0) Z@ ci(t),

where @ ~ Unif(D), D = (—10,10)¢ and ¢ are orthonormal.
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Data are a grid of observations y; ; = x(ti ;) + ¢;; and IID ¢;; ~ N(0,5°). The field c is
endowed with a prior

log c(t; 0) Z@ ci(t),
where @ ~ Unif(D), D = (—10,10)¢ and ¢ are orthonormal.

Aim: Estimate the posterior mean of the parameter 6.
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Extension 2: Unknown Normalisation Constant

Consider again Darcy’'s PDE

Ve [e(t:0)Vex(t)] = 0 if t1,t € (0,1)
_ 5} ift,=0
x(t) = { -t ift=1
Vyx(t) = 0 if t; € {0,1},

Data are a grid of observations y; ; = x(ti ;) + ¢;; and IID ¢;; ~ N(0,5°). The field c is
endowed with a prior

log c(t; 0) Z@ ci(t),
where @ ~ Unif(D), D = (—10,10)¢ and ¢ are orthonormal.

Aim: Estimate the posterior mean of the parameter 6.

Approach: Bayesian Probabilistic Numerical Method for the likelihood £,(8; y) (to avoid
exact solution of the PDE), followed by Stein’s method for integration with respect to

w(0) x Ln(0;y).
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Extension 2: Unknown Normalisation Constant

Performance of Bayesian Quadrature (via Stein's method) for estimation of [ 61dr(0):
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Extension 3: U

Of course, knowing 7 is mathematically equivalent to knowing 7.

Consider now the situation where t; ~ 7 are lID and that is all that is known.
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Extension 3: Unknown p.d.f. 7

Of course, knowing 7 is mathematically equivalent to knowing 7.
Consider now the situation where t; ~ 7 are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. 7 as unknown objects:
@ x ~ GP (Gaussian process model - standard BQ)
o m(t) = [9(t; p)P(de) (hierarchical mixture model)
e P ~ DP(c, Py) (Dirichlet process model)
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Extension 3: Unknown p.d.f. 7

Of course, knowing 7 is mathematically equivalent to knowing 7.
Consider now the situation where t; ~ 7 are IID and that is all that is known.
Idea:

Model both the integrand x and the p.d.f. 7 as unknown objects:
@ x ~ GP (Gaussian process model - standard BQ)
o m(t) = [9(t; p)P(de) (hierarchical mixture model)
e P ~ DP(c, Py) (Dirichlet process model)

Recall: P ~ DP(a, Po) iff (P(B1), ..., P(Bm)) ~ Dir(aPo(B1),...,aPs(Bm))
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Extension 3: Unknown p.d.f. 7

Of course, knowing 7 is mathematically equivalent to knowing 7.
Consider now the situation where t; ~ 7 are IID and that is all that is known.
Idea:

Model both the integrand x and the p.d.f. 7 as unknown objects:
@ x ~ GP (Gaussian process model - standard BQ)
o m(t) = [9(t; p)P(de) (hierarchical mixture model)
e P ~ DP(c, Py) (Dirichlet process model)

Then condition x on data {(t;, x(t;))}/-; and condition 7 on data {t;}i_;.

This implies to a posterior distribution over the integral [ x(t)dn(t) that accounts for
uncertainty regarding both x and 7.
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Motivation: Assessm of Cardiac Models
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Motivation: Assessment of Cardiac Models
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Extension 3: Unknown p.d.f. 7
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Extension 3: Unknown p.d.f. 7

Suppose that:
@ x belongs to the RKHS associated to a kernel k, bounded on D x D, D C R.

o 7(-) is a location-scale mixture of Gaussians; ¥(+; ) = N(:; 1, ¢2).
@ Technical conditions on the Dirichlet process:
o p1 €ER and ¢ps € [g,7] for fixed o,7 € (0, 0).
o P, the true mixing distribution, has compact supp(P) C R X (g,7).
e Py has positive and continuous density on a rectangle R such that
supp(Po) C R C R x [, 7].
o Py satisfies the tail condition Po({(1,¢2) : |e1]| > t}) < cexp(—b|t|?) for all t > 0.
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Extension 3: Unknown p.d.f. 7

Suppose that:
@ x belongs to the RKHS associated to a kernel k, bounded on D x D, D C R.

o 7(-) is a location-scale mixture of Gaussians; ¥(+; ) = N(:; 1, ¢2).
@ Technical conditions on the Dirichlet process:
o p1 €ER and ¢ps € [g,7] for fixed o,7 € (0, 0).
o P, the true mixing distribution, has compact supp(P) C R X (g,7).
e Py has positive and continuous density on a rectangle R such that
supp(Po) € R C R x [a,7].
o Py satisfies the tail condition Po({(1,¢2) : |e1]| > t}) < cexp(—b|t|?) for all t > 0.
Then the posterior distribution over the unknown value of the integral converges to the
truth in Wasserstein metric at the rate

OP(n71/4+6)'

(Recall: dwass = [ |0 — 6o|pn(6)d6 where 6 is the true value of 6.)
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Extension 3: Unknown p.d.f. 7

Wasserstein Distance = 0.10
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(Implementation is straight-forward with a stick-breaking construction.
Exploits well-known conjugacy results for DP mixture models; Oates et al. [2017].)
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Eleventh Job: Non-Bayesian Methods?
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Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real
number
x = 0.a1a2a3a4 . .. S [0, 1]

in a truncated form
= 0.a1323334 . . . ap,

is such that the error e = x — X can be reasonably modelled by a uniform random variable
e ~ Unif(—=5 x 107" 5 x 107 ("),

This implies a distribution over the unknown value of x.
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The proposal of Hull and Swenson [1966] and others was to replace the last digit a,, in
each stored number that arises in the numerical solution of an ODE, with a uniformly
chosen element of {0,...,9}.
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Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real
number
x = 0.a1a2a3a4 . .. S [0, 1]

in a truncated form
= 0.a1323334 . . . ap,

is such that the error e = x — X can be reasonably modelled by a uniform random variable
e ~ Unif(—=5 x 107" 5 x 107 ("),
This implies a distribution over the unknown value of x.

The proposal of Hull and Swenson [1966] and others was to replace the last digit a,, in
each stored number that arises in the numerical solution of an ODE, with a uniformly
chosen element of {0,...,9}.

NB: This work focused on rounding error, rather than e.g. the (time) discretisation error
that is intrinsic to numerical ODE solvers; this could reflect the limited precision
arithmetic that was available from the computer hardware of the period.
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Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a
infinite-dimensional object
x(-)

in a discrete form
() =ag1() + -+ amdm(’)

is such that the error e = x — X can be reasonably modelled by a random process, such
as a Gaussian process:
e~ GP(0, ke).

This implies a distribution over the unknown value of x.
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Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a
infinite-dimensional object
x(*)

in a discrete form
() =ag1() + -+ amdm(’)

is such that the error e = x — X can be reasonably modelled by a random process, such
as a Gaussian process:
e~ GP(0, ke).

This implies a distribution over the unknown value of x.
In particular, when ¢; are finite elements, we can model
e(') = arei() ++ + amen)

where €; is a Gaussian process constrained to share the same support as ¢; and vanish at
nodal points. This enables to “trivial” modification of finite element methods. (i.e.
“Randomise the finite elements”; ¢; — ¢i + €;.)

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 159 / 183



Bayesian vs Non-Bayesian

Properties of (some) non-Bayesian methods:
@ Often trivial modification of classical code, to “inject noise”
o Computationally competitive with classical methods

@ However, simple models for error e can be inappropriate - and controversial
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Bayesian vs Non-Bayesian

Properties of (some) non-Bayesian methods:
@ Often trivial modification of classical code, to “inject noise”
o Computationally competitive with classical methods

@ However, simple models for error e can be inappropriate - and controversial

Properties of (some) Bayesian methods:
o Statistically well-founded
o Coherent framework in which to combine methods (see Part VI)

o Computationally very expensive (at the moment)
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In Part V it has been argued that:

Chris. J. Oates stic Numerical Methods June 2017 @ Dobbiaco



Conclusion

In Part V it has been argued that:

@ Several extensions of Bayesian Quadrature can be developed.

Chris. J. Oates stic Numerical Methods June 2017 @ Dobbiaco



Conclusion

In Part V it has been argued that:
@ Several extensions of Bayesian Quadrature can be developed.

@ Dirichlet process mixture models are a convenient means to construct a
non-parametric distribution on the space of p.d.f.s 7.

Chris. J. Oates stic Numerical Methods June 2017 @ Dobbiaco



Conclusion

In Part V it has been argued that:
@ Several extensions of Bayesian Quadrature can be developed.

@ Dirichlet process mixture models are a convenient means to construct a
non-parametric distribution on the space of p.d.f.s 7.

@ Non-Bayesian probabilistic numerical methods have been developed - but are rather
different to Bayesian probabilistic numerical methods (more like a perturbation
analysis?)

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco



Conclusion

In Part V it has been argued that:
@ Several extensions of Bayesian Quadrature can be developed.

@ Dirichlet process mixture models are a convenient means to construct a
non-parametric distribution on the space of p.d.f.s 7.

@ Non-Bayesian probabilistic numerical methods have been developed - but are rather
different to Bayesian probabilistic numerical methods (more like a perturbation
analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian
method?

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco



Conclusion

In Part V it has been argued that:
@ Several extensions of Bayesian Quadrature can be developed.

@ Dirichlet process mixture models are a convenient means to construct a
non-parametric distribution on the space of p.d.f.s 7.

@ Non-Bayesian probabilistic numerical methods have been developed - but are rather
different to Bayesian probabilistic numerical methods (more like a perturbation
analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian
method?

END OF PART V
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