Part V

History of Probabilistic Numerical Methods

Bayesian Numerical Analysis
P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV, 1, 163-175, 1988.

Seeing standard procedures emerge from the Bayesian approach may convince readers the argument isn't so crazy after all. The examples suggest the following program: Take standard numerical analysis procedures and see if they are Bayes (or admissible, or minimax). [..] The Bayesian approach yields more than the Bayes rule; it yields a posterior distribution. This can be used to give confidence sets as in Wahba (1983).

History of Probabilistic Numerical Methods

Bayesian Numerical Analysis
P. DIACONIS, Stanford University.

Statistical Decision Theory and Related Topics IV, 1, 163-175, 1988.

Seeing standard procedures emerge from the Bayesian approach may convince readers the argument isn't so crazy after all. The examples suggest the following program: Take standard numerical analysis procedures and see if they are Bayes (or admissible, or minimax). [..] The Bayesian approach yields more than the Bayes rule; it yields a posterior distribution. This can be used to give confidence sets as in Wahba (1983).

Tenth Job: Extension to More Challenging Integrals

Extension to More Challenging Integrals

Three extensions that we will discuss:
(1) Integrals over manifolds:

$$
\int_{\mathcal{M}} x(t) \mathrm{d} \pi(t)
$$

(3) Integrals with densities known up to normalisation:

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

- Integrals with unknown densities:

$$
\int x(t) \mathrm{d} \pi(t), \quad\left\{t_{i}\right\}_{i=1}^{n} \stackrel{\| D}{\sim} \pi
$$

In each case the aim is to perform principled Bayesian uncertainty quantification for the value of the integral $Q=\int x(t) \mathrm{d} \pi(t)$.

Extension to More Challenging Integrals

Three extensions that we will discuss:
(1) Integrals over manifolds:

$$
\int_{\mathcal{M}} x(t) \mathrm{d} \pi(t)
$$

(3) Integrals with densities known up to normalisation:

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

- Integrals with unknown densities:

$$
\int x(t) \mathrm{d} \pi(t), \quad\left\{t_{i}\right\}_{i=1}^{n} \stackrel{\| D}{\sim} \pi
$$

In each case the aim is to perform principled Bayesian uncertainty quantification for the value of the integral $Q=\int x(t) \mathrm{d} \pi(t)$.

Extension 1: Integrals Over Manifolds

Extension 1: Integrals Over Manifolds

$$
L_{o}\left(\boldsymbol{\omega}_{o}\right)=L_{e}\left(\boldsymbol{\omega}_{o}\right)+\int_{\mathbb{S}^{2}} L_{i}\left(\boldsymbol{\omega}_{i}\right) \rho\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}\right)\left[\boldsymbol{\omega}_{i} \cdot \boldsymbol{n}\right]_{+} \mathrm{d} \pi\left(\boldsymbol{\omega}_{i}\right)
$$

- $L_{o}\left(\omega_{o}\right)=$ outgoing radiance
- $L_{e}\left(\boldsymbol{\omega}_{o}\right)=$ amount of light emitted by the object itself
- $L_{i}\left(\boldsymbol{\omega}_{i}\right)=$ amount of light reaching object from direction $\boldsymbol{\omega}_{i}$
- $\rho=$ bidirectional reflectance distribution function
- $\pi=$ uniform distribution on \mathbb{S}^{2}

Extension 1: Integrals Over Manifolds

$$
L_{o}\left(\boldsymbol{\omega}_{o}\right)=L_{e}\left(\boldsymbol{\omega}_{o}\right)+\int_{\mathbb{S}^{2}} L_{i}\left(\boldsymbol{\omega}_{i}\right) \rho\left(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}\right)\left[\boldsymbol{\omega}_{i} \cdot \boldsymbol{n}\right]_{+} \mathrm{d} \pi\left(\boldsymbol{\omega}_{i}\right)
$$

- $L_{o}\left(\omega_{o}\right)=$ outgoing radiance
- $L_{e}\left(\boldsymbol{\omega}_{o}\right)=$ amount of light emitted by the object itself
- $L_{i}\left(\boldsymbol{\omega}_{i}\right)=$ amount of light reaching object from direction $\boldsymbol{\omega}_{i}$
- $\rho=$ bidirectional reflectance distribution function
- $\pi=$ uniform distribution on \mathbb{S}^{2}

To be computed

- for each pixel, and
- for each RGB channel.

Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions $x: \mathbb{S}^{2} \rightarrow \mathbb{R}$.
One such kernel, that leads to a Sobolev space of smoothness $\frac{3}{2}$ on \mathbb{S}^{2} :
$k\left(t, t^{\prime}\right)=\frac{8}{3}-\left\|t-t^{\prime}\right\|_{2}$ for all $t, t^{\prime} \in \mathbb{S}^{2}$.

Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions $x: \mathbb{S}^{2} \rightarrow \mathbb{R}$.
One such kernel, that leads to a Sobolev space of smoothness $\frac{3}{2}$ on \mathbb{S}^{2} :

$$
k\left(t, t^{\prime}\right)=\frac{8}{3}-\left\|t-t^{\prime}\right\|_{2} \text { for all } t, t^{\prime} \in \mathbb{S}^{2}
$$

Extension 1: Integrals Over Manifolds

Idea: Construct a RKHS of functions $x: \mathbb{S}^{2} \rightarrow \mathbb{R}$.
One such kernel, that leads to a Sobolev space of smoothness $\frac{3}{2}$ on \mathbb{S}^{2} :

$$
k\left(t, t^{\prime}\right)=\frac{8}{3}-\left\|t-t^{\prime}\right\|_{2} \text { for all } t, t^{\prime} \in \mathbb{S}^{2}
$$

For a certain spherical t-design $\left\{t_{i}\right\}_{i=1}^{n}$, a convergence rate of ewce $(M)=O\left(n^{-\frac{3}{4}}\right)$ is achieved by the method $M=(A, b)$ where b is the Bayesian Quadrature posterior mean and this is worst-case optimal:

Extension 1: Integrals Over Manifolds

Full uncertainty quantification for integrals on manifolds:

Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

occur in applications of Bayesian statistical methods:

$$
p(\text { params } \mid \text { data })=\frac{p(\text { data } \mid \text { params }) p(\text { params })}{\int p(\text { data } \mid \text { params }) \mathrm{d} p(\text { params })} \quad \leftarrow \text { unknown }(*)
$$

Cannot compute with Bayesian quadrature, since relies on the following integrals having a closed form:

MCMC? Compute the denominator (*) with Bayesian Quadrature first?
To address these problems we will instead go to some effort to force (**) to have a closed form... via Stein's Method.

Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

occur in applications of Bayesian statistical methods:

$$
p(\text { params } \mid \text { data })=\frac{p(\text { data } \mid \text { params }) p(\text { params })}{\int p(\text { data } \mid \text { params }) \mathrm{d} p(\text { params })} \quad \leftarrow \text { unknown }(*)
$$

Cannot compute with Bayesian quadrature, since relies on the following integrals having a closed form:

$$
\int k(\cdot, t) \mathrm{d} \pi(t), \quad \iint k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right) \quad(* *)
$$

MCMC? Compute the denominator (*) with Bayesian Quadrature first?
To address these problems we will instead go to some effort to force (**) to have a closed form... via Stein's Method.

Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

occur in applications of Bayesian statistical methods:

$$
p(\text { params } \mid \text { data })=\frac{p(\text { data } \mid \text { params }) p(\text { params })}{\int p(\text { data } \mid \text { params }) \mathrm{d} p(\text { params })} \quad \leftarrow \text { unknown }(*)
$$

Cannot compute with Bayesian quadrature, since relies on the following integrals having a closed form:

$$
\int k(\cdot, t) \mathrm{d} \pi(t), \quad \iint k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right) \quad(* *)
$$

MCMC? Compute the denominator (*) with Bayesian Quadrature first?
To address these problems we will instead go to some effort to force $\left(*_{*}\right)$ to have a closed form... via Stein's Method.

Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

occur in applications of Bayesian statistical methods:

$$
p(\text { params } \mid \text { data })=\frac{p(\text { data } \mid \text { params }) p(\text { params })}{\int p(\text { data } \mid \text { params }) \mathrm{d} p(\text { params })} \quad \leftarrow \text { unknown }(*)
$$

Cannot compute with Bayesian quadrature, since relies on the following integrals having a closed form:

$$
\int k(\cdot, t) \mathrm{d} \pi(t), \quad \iint k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right) \quad(* *)
$$

MCMC? Compute the denominator $(*)$ with Bayesian Quadrature first?
To address these problems we will instead go to some effort to force $(* *)$ to have a closed form... via Stein's Method.

Extension 2: Unknown Normalisation Constant

Integrals with densities known up to normalisation

$$
\int x(t) \mathrm{d} \pi(t), \quad \tilde{\pi} \propto \pi
$$

occur in applications of Bayesian statistical methods:

$$
p(\text { params } \mid \text { data })=\frac{p(\text { data } \mid \text { params }) p(\text { params })}{\int p(\text { data } \mid \text { params }) \mathrm{d} p(\text { params })} \quad \leftarrow \text { unknown }(*)
$$

Cannot compute with Bayesian quadrature, since relies on the following integrals having a closed form:

$$
\int k(\cdot, t) \mathrm{d} \pi(t), \quad \iint k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right) \quad(* *)
$$

MCMC? Compute the denominator $(*)$ with Bayesian Quadrature first?
To address these problems we will instead go to some effort to force $(* *)$ to have a closed form... via Stein's Method.

A Brief History of Stein

A BOUND FOR THE ERROR IN THE NORMAL APPROXIMATION TO THE DISTRIBUTION OF A SUM OF DEPENDENT RANDOM VARIABLES

CHARLES STEIN
Stanford University

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Supnose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$.
- Assume that, for k sufficiently large, $\alpha_{k} \leq e^{-\lambda k}$.

Then

$$
\left|\mathbb{P}\left[\frac{\sum_{i=1}^{n} X_{i}}{\left(\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right)\right)^{1 / 2}} \leq a\right]-\Phi(a)\right|=O\left(n^{-1 / 2}\right) .
$$

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$
- Assume that, for k sufficiently large, $\alpha_{k} \leq e^{-\lambda k}$

Then
$\left|\mathbb{P}\left[\frac{\sum_{i=1}^{n} X_{i}}{\left(\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right)\right)^{1 / 2}} \leq a\right]-\Phi(a)\right|=O\left(n^{-1 / 2}\right)$.

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$
- Assume that, for k sufficiently large, $\alpha_{k}<e$

Then

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$
- Assume that, for k sufficiently large, $\alpha_{k} \leq e$

Then

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$.
- Assume that, for k sufficiently large, $\alpha_{k} \leq e$

Then

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$.
- Assume that, for k sufficiently large, $\alpha_{k} \leq e^{-\lambda k}$.

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$.
- Assume that, for k sufficiently large, $\alpha_{k} \leq e^{-\lambda k}$.

Then

$$
\left|\mathbb{P}\left[\frac{\sum_{i=1}^{n} X_{i}}{\left(\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right)\right)^{1 / 2}} \leq a\right]-\Phi(a)\right|=O\left(n^{-1 / 2}\right)
$$

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

Original aim was a central limit theorem for correlated variables:

Stein, 1972

Suppose X_{1}, X_{2}, \ldots is a stationary sequence of random variables.

- Choose $A, B \subset \mathbb{N}$ such that $\inf _{i \in A, j \in B}|i-j| \geq k$.
- Choose arbitrary functions $Y \equiv Y\left(X_{A}\right), Z \equiv Z\left(X_{B}\right)$.
- Assume that there exists α_{k} such that, for all such choices, $|\operatorname{Corr}(Y, Z)| \leq \alpha_{k}$.
- Assume that, for k sufficiently large, $\alpha_{k} \leq e^{-\lambda k}$.

Then

$$
\left|\mathbb{P}\left[\frac{\sum_{i=1}^{n} X_{i}}{\left(\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right)\right)^{1 / 2}} \leq a\right]-\Phi(a)\right|=O\left(n^{-1 / 2}\right)
$$

A specific approach that led to some general methods for bounding the distance $d\left(\pi^{\prime}, \pi\right)$ between two distributions π, π^{\prime}.

A Brief History of Stein

"I regret that, in order to complete this paper in time for publication, I have been forced to submit it with many defects remaining. In particular the proof of the concrete results of Section 3 is somewhat incomplete."

Stein's Method: A Modern Retrospective

The essence of Stein's method is most clearly distilled in Ley et al. [2017]:

A p.d.f. π is characterised by the pair $(\mathcal{S}, \mathcal{F})$, consisting of a Stein Operator \mathcal{S} and a Stein Class \mathcal{F}, if it holds that

Example 1 (Stein, 1972)

- π is the p.d.f. for $N\left(\mu, \sigma^{2}\right)$
- $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$
- $\mathcal{F}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}\right.$ s.t. $f \pi \in W^{1,1}$ and $\left.\lim _{t \searrow-\infty} f(t) \pi(t)=\lim _{t \nearrow+\infty} f(t) \pi(t)\right\}$

Stein's Method: A Modern Retrospective

The essence of Stein's method is most clearly distilled in Ley et al. [2017]:

A p.d.f. π is characterised by the pair $(\mathcal{S}, \mathcal{F})$, consisting of a Stein Operator \mathcal{S} and a Stein Class \mathcal{F}, if it holds that

$$
X \sim \pi \quad \text { iff } \quad \mathbb{E}[\mathcal{S} f(X)]=0 \quad \forall f \in \mathcal{F} .
$$

Example 1 (Stein, 1972)

\square

Stein's Method: A Modern Retrospective

The essence of Stein's method is most clearly distilled in Ley et al. [2017]:

A p.d.f. π is characterised by the pair $(\mathcal{S}, \mathcal{F})$, consisting of a Stein Operator \mathcal{S} and a Stein Class \mathcal{F}, if it holds that

$$
X \sim \pi \quad \text { iff } \quad \mathbb{E}[\mathcal{S} f(X)]=0 \quad \forall f \in \mathcal{F} .
$$

Example 1 (Stein, 1972)

- π is the p.d.f. for $N\left(\mu, \sigma^{2}\right)$
- $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$
- $\mathcal{F}=\left\{f: \mathbb{R} \rightarrow \mathbb{R}\right.$ s.t. $f \pi \in W^{1,1}$ and $\left.\lim _{t \searrow-\infty} f(t) \pi(t)=\lim _{t \nearrow+\infty} f(t) \pi(t)\right\}$.

Extension 2: Unknown Normalisation Constant

Our aim is to build a kernel k for which

$$
\int_{D} k(\cdot, t) \mathrm{d} \pi(t)=0 \quad \iint_{D \times D} k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right)=0
$$

each have a (trivial) closed form, via Stein's method.

The kernel k will be associated with a RKHS of functions - this will be the set $\mathcal{S F}$ - that can be used within the Bayesian Quadrature method.

Full details in Oates et al. [2016a]

Extension 2: Unknown Normalisation Constant

Our aim is to build a kernel k for which

$$
\int_{D} k(\cdot, t) \mathrm{d} \pi(t)=0 \quad \iint_{D \times D} k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right)=0
$$

each have a (trivial) closed form, via Stein's method.

The kernel k will be associated with a RKHS of functions - this will be the set $\mathcal{S F}$ - that can be used within the Bayesian Quadrature method.

Full details in Oates et al. [2016a]

Extension 2: Unknown Normalisation Constant

Our aim is to build a kernel k for which

$$
\int_{D} k(\cdot, t) \mathrm{d} \pi(t)=0 \quad \iint_{D \times D} k\left(t, t^{\prime}\right) \mathrm{d}(\pi \times \pi)\left(t \times t^{\prime}\right)=0
$$

each have a (trivial) closed form, via Stein's method.

The kernel k will be associated with a RKHS of functions - this will be the set $\mathcal{S F}$ - that can be used within the Bayesian Quadrature method.

Full details in Oates et al. [2016a].

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:
$k^{\prime}\left(t, t^{\prime}\right)=S_{t} S_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)=\nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\begin{aligned}
\int_{D} k(\cdot, t) \mathrm{d} \pi(t) & =\int_{D} S \cdot S_{t} k_{F}(,, t) \mathrm{d} \pi(t) \\
& =S \cdot \int_{D} S_{t} k_{F}(\cdot, t) \mathrm{d} \pi(t) \\
& =S \cdot \oint_{\partial D} k_{F}(\cdot, t) \cdot n(t) \mathrm{d} \pi(t) \stackrel{k_{F}}{ } \text { "Suff reg". } S .0=0
\end{aligned}
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)
$$

Note that k can be computed from $\tilde{\pi}$! Moreover,

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right)
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}$! Moreover,

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right) .
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right) .
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\int_{D} k(\cdot, t) \mathrm{d} \pi(t)=\int_{D} \mathcal{S} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t)
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right) .
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\begin{aligned}
\int_{D} k(\cdot, t) \mathrm{d} \pi(t) & =\int_{D} \mathcal{S} \cdot \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \int_{D} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t)
\end{aligned}
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right) .
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\begin{aligned}
\int_{D} k(\cdot, t) \mathrm{d} \pi(t) & =\int_{D} \mathcal{S} \cdot \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \int_{D} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \oint_{\partial D} k_{\mathcal{F}}(\cdot, t) \cdot n(t) \mathrm{d} \pi(t)
\end{aligned}
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right)
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\begin{aligned}
\int_{D} k(\cdot, t) \mathrm{d} \pi(t) & =\int_{D} \mathcal{S} \cdot \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \cdot \int_{D} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \cdot \oint_{\partial D} k_{\mathcal{F}}(\cdot, t) \cdot n(t) \mathrm{d} \pi(t) \stackrel{k_{\mathcal{F}} \text { "suff. reg." }}{=} \mathcal{S} .0=0
\end{aligned}
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Let $\mathcal{S}: f \mapsto \nabla(f \pi) / \pi$ and let \mathcal{F} be an RKHS with kernel $k_{\mathcal{F}}$.
Then (if $k_{\mathcal{F}}$ is sufficiently regular) the set $\mathcal{S F}$ can be endowed with RKHS structure, with kernel:

$$
\begin{aligned}
k\left(t, t^{\prime}\right)=\mathcal{S}_{t} \mathcal{S}_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)= & \nabla_{t} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \nabla_{t^{\prime}} k_{\mathcal{F}}\left(t, t^{\prime}\right) \\
& +\frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} \cdot \nabla_{t} k_{\mathcal{F}}\left(t, t^{\prime}\right)+\frac{\nabla_{t} \pi(t)}{\pi(t)} \cdot \frac{\nabla_{t^{\prime}} \pi\left(t^{\prime}\right)}{\pi\left(t^{\prime}\right)} k_{\mathcal{F}}\left(t, t^{\prime}\right) .
\end{aligned}
$$

Note that k can be computed from $\tilde{\pi}!$ Moreover,

$$
\begin{aligned}
\int_{D} k(\cdot, t) \mathrm{d} \pi(t) & =\int_{D} \mathcal{S} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \int_{D} \mathcal{S}_{t} k_{\mathcal{F}}(\cdot, t) \mathrm{d} \pi(t) \\
& =\mathcal{S} \oint_{\partial D} k_{\mathcal{F}}(\cdot, t) \cdot n(t) \mathrm{d} \pi(t) \stackrel{k_{\mathcal{F}} \text { "suff. reg." }}{=} \mathcal{S} .0=0
\end{aligned}
$$

Detail: The kernel $1+k\left(t, t^{\prime}\right)$ is actually used for Bayesian Quadrature (to catch mean-shift).

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{T}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular"
- Assume the Markov chain is uniformly ergodic.

Then, for $x \in \mathcal{S F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b].

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular"
- Assume the Markov chain is uniformly ergodic

Then, for $x \in \mathcal{S F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b]

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D.
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$
- Assume $k_{\mathcal{F}}$ is "sufficiently regular"
- Assume the Markov chain is uniformly ergodic

Then, for $x \in \mathcal{S} \mathcal{F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b]

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D.
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular"
- Assume the Markov chain is uniformly ergodic.

Then, for $x \in \mathcal{S F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b]

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D.
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular".
- Assume the Markov chain is uniformly ergodic.

Then, for $x \in \mathcal{S F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b]

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D.
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular".
- Assume the Markov chain is uniformly ergodic.

Then, for $x \in \mathcal{S} \mathcal{F}$, there exists $h_{0}>0$ such that

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$

Full details in Oates et al. [2016b]

Extension 2: Unknown Normalisation Constant

Suppose $\left\{t_{i}\right\}_{i=1}^{n}$ arise from a Markov chain that targets π.

- Assume D is bounded.
- Assume π is bounded away from 0 on D.
- Assume $\pi \in C^{2 a+1}(D)$ and $k_{\mathcal{F}} \in C^{2 b+2}(D \times D)$.
- Assume $k_{\mathcal{F}}$ is "sufficiently regular".
- Assume the Markov chain is uniformly ergodic.

Then, for $x \in \mathcal{S F}$, there exists $h_{0}>0$ such that

$$
1_{h<h_{0}}(\int x(t) \mathrm{d} \pi(t)-\underbrace{b(a)}_{\text {BQ estimator }})^{2}=O\left(n^{-1-\frac{2(a \wedge b)}{d}+\epsilon}\right),
$$

for arbitrary $\epsilon>0$. Here h is the fill distance of $\left\{t_{i}\right\}_{i=1}^{n}$.

Full details in Oates et al. [2016b].

Extension 2: Unknown Normalisation Constant

Consider again Darcy's PDE

$$
\begin{aligned}
\nabla_{t} \cdot\left[c(t ; \theta) \nabla_{t} x(t)\right] & =0 & \text { if } t_{1}, t_{2} \in(0,1) \\
x(t) & = \begin{cases}t_{1} & \text { if } t_{2}=0 \\
1-t_{1} & \text { if } t_{2}=1 \\
\nabla_{t_{1}} \times(t) & =0\end{cases} & \text { if } t_{1} \in\{0,1\},
\end{aligned}
$$

Data are a grid of observations $y_{i, j}=x\left(t_{i, j}\right)+\epsilon_{i, j}$ and IID $\epsilon_{i, j} \sim N\left(0, \sigma^{2}\right)$. The field c is endowed with a prior

$$
\log c(t ; \boldsymbol{\theta})=\sum_{i=1}^{d} \theta_{i} c_{i}(t)
$$

where $\boldsymbol{\theta} \sim \operatorname{Unif}(D), D=(-10,10)^{d}$ and c_{i} are orthonormal.

Aim: Estimate the posterior mean of the parameter θ

Approac': Bayesian Probabilistic Numerical Method for the likelihood $\mathcal{L}_{n}(\theta ; y)$ (to avoid exact solution of the PDE), followed by Stein's method for integration with respect to $\pi(\boldsymbol{\theta}) \propto \mathcal{L}_{n}(\boldsymbol{\theta} ; \boldsymbol{y})$.

Extension 2: Unknown Normalisation Constant

Consider again Darcy's PDE

$$
\begin{array}{rll}
\nabla_{t} \cdot\left[c(t ; \boldsymbol{\theta}) \nabla_{t} x(t)\right] & =0 & \text { if } t_{1}, t_{2} \in(0,1) \\
x(t) & = \begin{cases}t_{1} & \text { if } t_{2}=0 \\
1-t_{1} & \text { if } t_{2}=1\end{cases} \\
\nabla_{t_{1}} x(t) & =0 & \text { if } t_{1} \in\{0,1\}
\end{array}
$$

Data are a grid of observations $y_{i, j}=x\left(t_{i, j}\right)+\epsilon_{i, j}$ and IID $\epsilon_{i, j} \sim N\left(0, \sigma^{2}\right)$. The field c is endowed with a prior

$$
\log c(t ; \boldsymbol{\theta})=\sum_{i=1}^{d} \theta_{i} c_{i}(t)
$$

where $\boldsymbol{\theta} \sim \operatorname{Unif}(D), D=(-10,10)^{d}$ and c_{i} are orthonormal.

Aim: Estimate the posterior mean of the parameter $\boldsymbol{\theta}$.
Approach: Bayesian Probabilistic Numerical Method for the likelihood $\mathcal{L}_{n}(\theta ; y)$ (to avoid exact solution of the PDE), followed by Stein's method for integration with respect to $\pi(\boldsymbol{\theta}) \propto \mathcal{L}_{n}(\boldsymbol{\theta} ; \boldsymbol{y})$.

Extension 2: Unknown Normalisation Constant

Consider again Darcy's PDE

$$
\begin{aligned}
\nabla_{t} \cdot\left[c(t ; \boldsymbol{\theta}) \nabla_{t} x(t)\right] & =0 \\
x(t) & = \begin{cases}t_{1} & \text { if } t_{1}, t_{2} \in(0,1) \\
1-t_{1} & \text { if } t_{2}=1\end{cases} \\
\nabla_{t_{1}} x(t) & =0
\end{aligned}
$$

Data are a grid of observations $y_{i, j}=x\left(t_{i, j}\right)+\epsilon_{i, j}$ and IID $\epsilon_{i, j} \sim N\left(0, \sigma^{2}\right)$. The field c is endowed with a prior

$$
\log c(t ; \boldsymbol{\theta})=\sum_{i=1}^{d} \theta_{i} c_{i}(t)
$$

where $\boldsymbol{\theta} \sim \operatorname{Unif}(D), D=(-10,10)^{d}$ and c_{i} are orthonormal.

Aim: Estimate the posterior mean of the parameter $\boldsymbol{\theta}$.
Approach: Bayesian Probabilistic Numerical Method for the likelihood $\mathcal{L}_{n}(\boldsymbol{\theta} ; \boldsymbol{y})$ (to avoid exact solution of the PDE), followed by Stein's method for integration with respect to $\pi(\boldsymbol{\theta}) \propto \mathcal{L}_{n}(\boldsymbol{\theta} ; \boldsymbol{y})$.

Extension 2: Unknown Normalisation Constant

Performance of Bayesian Quadrature (via Stein's method) for estimation of $\int \theta_{1} \mathrm{~d} \pi(\boldsymbol{\theta})$:

Here m is the number of PDE forward-solves used.

Extension 3: Unknown p.d.f. π

Of course, knowing $\tilde{\pi}$ is mathematically equivalent to knowing π.
Consider now the situation where $t_{i} \sim \pi$ are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. π as unknown objects:

- $x \sim \mathcal{G P}$ (Gaussian process model - standard BQ)
- $\pi(t)=\int \psi(t ; \varphi) P(\mathrm{~d} \varphi)$ (hierarchical mixture model)
- $P \sim \mathcal{D P}\left(\alpha, P_{0}\right)$ (Dirichlet process model)

Extension 3: Unknown p.d.f. π

Of course, knowing $\tilde{\pi}$ is mathematically equivalent to knowing π.
Consider now the situation where $t_{i} \sim \pi$ are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. π as unknown objects:

- $x \sim \mathcal{G P}$ (Gaussian process model - standard BQ)
- $\pi(t)=\int \psi(t ; \varphi) P(\mathrm{~d} \varphi)$ (hierarchical mixture model)
- $P \sim \mathcal{D P}\left(\alpha, P_{0}\right)$ (Dirichlet process model)

Extension 3: Unknown p.d.f. π

Of course, knowing $\tilde{\pi}$ is mathematically equivalent to knowing π.
Consider now the situation where $t_{i} \sim \pi$ are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. π as unknown objects:

- $x \sim \mathcal{G P}$ (Gaussian process model - standard BQ)
- $\pi(t)=\int \psi(t ; \varphi) P(\mathrm{~d} \varphi)$ (hierarchical mixture model)
- $P \sim \mathcal{D P}\left(\alpha, P_{0}\right)$ (Dirichlet process model)

Recall: $P \sim \mathcal{D P}\left(\alpha, P_{0}\right)$ iff $\left(P\left(B_{1}\right), \ldots, P\left(B_{m}\right)\right) \sim \operatorname{Dir}\left(\alpha P_{0}\left(B_{1}\right), \ldots, \alpha P_{0}\left(B_{m}\right)\right)$

Extension 3: Unknown p.d.f. π

Of course, knowing $\tilde{\pi}$ is mathematically equivalent to knowing π.
Consider now the situation where $t_{i} \sim \pi$ are IID and that is all that is known.

Idea:

Model both the integrand x and the p.d.f. π as unknown objects:

- $x \sim \mathcal{G P}$ (Gaussian process model - standard BQ)
- $\pi(t)=\int \psi(t ; \varphi) P(\mathrm{~d} \varphi)$ (hierarchical mixture model)
- $P \sim \mathcal{D} \mathcal{P}\left(\alpha, P_{0}\right)$ (Dirichlet process model)

Then condition x on data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$ and condition π on data $\left\{t_{i}\right\}_{i=1}^{n}$.
This implies to a posterior distribution over the integral $\int x(t) \mathrm{d} \pi(t)$ that accounts for uncertainty regarding both x and π.

Motivation: Assessment of Cardiac Models

Motivation: Assessment of Cardiac Models

C)

Motivation: Assessment of Cardiac Models

Extension 3: Unknown p.d.f. π

Suppose that:

- x belongs to the RKHS associated to a kernel k, bounded on $D \times D, D \subset \mathbb{R}$.
- $\pi(\cdot)$ is a location-scale mixture of Gaussians; $\psi(\cdot ; \varphi)=\mathrm{N}\left(\cdot ; \varphi_{1}, \varphi_{2}\right)$.
- Technical conditions on the Dirichlet process:
- $\varphi_{1} \in \mathbb{R}$ and $\varphi_{2} \in[\underline{\sigma}, \bar{\sigma}]$ for fixed $\underline{\sigma}, \bar{\sigma} \in(0, \infty)$.
- P, the true mixing distribution, has compact $\operatorname{supp}(P) \subset \mathbb{R} \times(\underline{\sigma}, \bar{\sigma})$.
- P_{0} has positive and continuous density on a rectangle R such that
$\operatorname{supp}\left(P_{0}\right) \subseteq R \subseteq \mathbb{R} \times[\sigma, \sigma]$.
- P_{0} satisfies the tail condition $P_{0}\left(\left\{\left(\varphi_{1}, \varphi_{2}\right):\left|\varphi_{1}\right|>t\right\}\right) \leq c \exp \left(-b|t|^{\delta}\right)$ for all $t>0$.

Then the posterior distribution over the unknown value of the integral converges to the truth in Wasserstein metric at the rate

$$
O_{P}\left(n^{-1 / 4+\epsilon}\right) .
$$

$$
\text { (Recall: } d_{\text {Wass }}=\int\left|\theta-\theta_{0}\right| p_{n}(\theta) \mathrm{d} \theta \text { where } \theta_{0} \text { is the true value of } \theta \text {.) }
$$

Extension 3: Unknown p.d.f. π

Suppose that:

- x belongs to the RKHS associated to a kernel k, bounded on $D \times D, D \subset \mathbb{R}$.
- $\pi(\cdot)$ is a location-scale mixture of Gaussians; $\psi(\cdot ; \varphi)=N\left(\cdot ; \varphi_{1}, \varphi_{2}\right)$.
- Technical conditions on the Dirichlet process:
- $\varphi_{1} \in \mathbb{R}$ and $\varphi_{2} \in[\underline{\sigma}, \bar{\sigma}]$ for fixed $\underline{\sigma}, \bar{\sigma} \in(0, \infty)$.
$\circ P$, the true mixing distribution, has compact $\operatorname{supp}(P) \subset \mathbb{R} \times(\sigma, \bar{\sigma})$
- P_{0} has positive and continuous density on a rectangle R such that
$\operatorname{supp}\left(P_{0}\right) \subseteq R \subseteq \mathbb{R} \times[\underline{\sigma}, \bar{\sigma}]$.
- P_{0} satisfies the tail condition $F_{0}\left(\left\{\left(\varphi_{1}, \varphi_{2}\right):\left|\varphi_{1}\right|>t\right\}\right) \leq c \exp \left(-b|t|^{\delta}\right)$ for all $t>0$

Then the posterior distribution over the unknown value of the integral converges to the truth in Wasserstein metric at the rate

(Recall: $d_{\text {Wass }}=\int\left|\theta-\theta_{0}\right| p_{n}(\theta) \mathrm{d} \theta$ where θ_{0} is the true value of θ.)

Extension 3: Unknown p.d.f. π

Suppose that:

- x belongs to the RKHS associated to a kernel k, bounded on $D \times D, D \subset \mathbb{R}$.
- $\pi(\cdot)$ is a location-scale mixture of Gaussians; $\psi(\cdot ; \varphi)=\mathrm{N}\left(\cdot ; \varphi_{1}, \varphi_{2}\right)$.
- Technical conditions on the Dirichlet process:
- $\varphi_{1} \in \mathbb{R}$ and $\varphi_{2} \in[\underline{\sigma}, \bar{\sigma}]$ for fixed $\underline{\sigma}, \bar{\sigma} \in(0, \infty)$.
- P, the true mixing distribution, has compact supp $(P) \subset \mathbb{R} \times(\sigma, \bar{\sigma})$
o P has positive and continuous density on a rectangle R such that
- P_{0} satisfies the tail condition $P_{0}\left(\left\{\left(\varphi_{1}, \varphi_{2}\right):\left|\varphi_{1}\right|>t\right\}\right) \leq c \exp \left(-b|t|^{\delta}\right)$ for all $t>0$.

Then the posterior distribution over the unknown value of the integral converges to the truth in Wasserstein metric at the rate

(Recall: $d_{\text {Wass }}=\int\left|\theta-\theta_{0}\right| p_{n}(\theta) \mathrm{d} \theta$ where θ_{0} is the true value of θ.)

Extension 3: Unknown p.d.f. π

Suppose that:

- x belongs to the RKHS associated to a kernel k, bounded on $D \times D, D \subset \mathbb{R}$.
- $\pi(\cdot)$ is a location-scale mixture of Gaussians; $\psi(\cdot ; \varphi)=\mathrm{N}\left(\cdot ; \varphi_{1}, \varphi_{2}\right)$.
- Technical conditions on the Dirichlet process:
- $\varphi_{1} \in \mathbb{R}$ and $\varphi_{2} \in[\underline{\sigma}, \bar{\sigma}]$ for fixed $\underline{\sigma}, \bar{\sigma} \in(0, \infty)$.
- P, the true mixing distribution, has compact supp $(P) \subset \mathbb{R} \times(\underline{\sigma}, \bar{\sigma})$.
- P_{0} has positive and continuous density on a rectangle R such that $\operatorname{supp}\left(P_{0}\right) \subseteq R \subseteq \mathbb{R} \times[\underline{\sigma}, \bar{\sigma}]$.
- P_{0} satisfies the tail condition $P_{0}\left(\left\{\left(\varphi_{1}, \varphi_{2}\right):\left|\varphi_{1}\right|>t\right\}\right) \leq c \exp \left(-b|t|^{\delta}\right)$ for all $t>0$.

Then the posterior distribution over the unknown value of the integral converges to the

 truth in Wasserstein metric at the rate(Recall: $d_{\text {Wass }}=\int\left|\theta-\theta_{0}\right| p_{n}(\theta) \mathrm{d} \theta$ where θ_{0} is the true value of θ.)

Extension 3: Unknown p.d.f. π

Suppose that:

- x belongs to the RKHS associated to a kernel k, bounded on $D \times D, D \subset \mathbb{R}$.
- $\pi(\cdot)$ is a location-scale mixture of Gaussians; $\psi(\cdot ; \varphi)=\mathrm{N}\left(\cdot ; \varphi_{1}, \varphi_{2}\right)$.
- Technical conditions on the Dirichlet process:
- $\varphi_{1} \in \mathbb{R}$ and $\varphi_{2} \in[\underline{\sigma}, \bar{\sigma}]$ for fixed $\underline{\sigma}, \bar{\sigma} \in(0, \infty)$.
- P, the true mixing distribution, has compact supp $(P) \subset \mathbb{R} \times(\underline{\sigma}, \bar{\sigma})$.
- P_{0} has positive and continuous density on a rectangle R such that

$$
\operatorname{supp}\left(P_{0}\right) \subseteq R \subseteq \mathbb{R} \times[\underline{\sigma}, \bar{\sigma}]
$$

- P_{0} satisfies the tail condition $P_{0}\left(\left\{\left(\varphi_{1}, \varphi_{2}\right):\left|\varphi_{1}\right|>t\right\}\right) \leq c \exp \left(-b|t|^{\delta}\right)$ for all $t>0$.

Then the posterior distribution over the unknown value of the integral converges to the truth in Wasserstein metric at the rate

$$
O_{P}\left(n^{-1 / 4+\epsilon}\right) .
$$

(Recall: $d_{\text {Wass }}=\int\left|\theta-\theta_{0}\right| p_{n}(\theta) \mathrm{d} \theta$ where θ_{0} is the true value of θ.)

Extension 3: Unknown p.d.f. π

(Implementation is straight-forward with a stick-breaking construction. Exploits well-known conjugacy results for DP mixture models; Oates et al. [2017].)

Eleventh Job: Non-Bayesian Methods?

Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real number

$$
x=0 . a_{1} a_{2} a_{3} a_{4} \ldots \in[0,1]
$$

in a truncated form

$$
\hat{x}=0 . a_{1} a_{2} a_{3} a_{4} \ldots a_{n}
$$

is such that the error $e=x-\hat{x}$ can be reasonably modelled by a uniform random variable

$$
e \sim \operatorname{Unif}\left(-5 \times 10^{-(n+1)}, 5 \times 10^{-(n+1)}\right)
$$

This implies a distribution over the unknown value of x.
The proposal of Hull and Swenson [1966] and others was to replace the last digit a_{n}, in each stored number that arises in the numerical solution of an ODE, with a uniformly chosen element of \{0,

NB: This work focused on rounding error, rather than e.g. the (time) discretisation error that is intrinsic to numerical ODE solvers; this could reflect the limited precision arithmetic that was available from the computer hardware of the period.

Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real number

$$
x=0 . a_{1} a_{2} a_{3} a_{4} \ldots \in[0,1]
$$

in a truncated form

$$
\hat{x}=0 . a_{1} a_{2} a_{3} a_{4} \ldots a_{n},
$$

is such that the error $e=x-\hat{x}$ can be reasonably modelled by a uniform random variable

$$
e \sim \operatorname{Unif}\left(-5 \times 10^{-(n+1)}, 5 \times 10^{-(n+1)}\right)
$$

This implies a distribution over the unknown value of x.
The proposal of Hull and Swenson [1966] and others was to replace the last digit a_{n}, in each stored number that arises in the numerical solution of an ODE, with a uniformly chosen element of $\{0, \ldots, 9\}$.

NB: This work focused on rounding error, rather than e.g. the (time) discretisation error that is intrinsic to numerical ODE solvers; this could reflect the limited precision arithmetic that was available from the computer hardware of the period.

Probabilistic Models for Rounding Error

Hull and Swenson [1966] and others supposed that rounding, i.e. representation of a real number

$$
x=0 . a_{1} a_{2} a_{3} a_{4} \ldots \in[0,1]
$$

in a truncated form

$$
\hat{x}=0 . a_{1} a_{2} a_{3} a_{4} \ldots a_{n},
$$

is such that the error $e=x-\hat{x}$ can be reasonably modelled by a uniform random variable

$$
e \sim \operatorname{Unif}\left(-5 \times 10^{-(n+1)}, 5 \times 10^{-(n+1)}\right)
$$

This implies a distribution over the unknown value of x.
The proposal of Hull and Swenson [1966] and others was to replace the last digit a_{n}, in each stored number that arises in the numerical solution of an ODE, with a uniformly chosen element of $\{0, \ldots, 9\}$.

NB: This work focused on rounding error, rather than e.g. the (time) discretisation error that is intrinsic to numerical ODE solvers; this could reflect the limited precision arithmetic that was available from the computer hardware of the period.

Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a infinite-dimensional object

$$
x(\cdot)
$$

in a discrete form

$$
\hat{x}(\cdot)=a_{1} \phi_{1}(\cdot)+\cdots+a_{m} \phi_{m}(\cdot)
$$

is such that the error $e=x-\hat{x}$ can be reasonably modelled by a random process, such as a Gaussian process:

$$
e \sim \mathcal{G P}\left(0, k_{e}\right) .
$$

This implies a distribution over the unknown value of x.
In particular, when ϕ_{i} are finite elements, we can model

where e_{i} is a Gaussian process constrained to share the same support as ϕ_{i} and vanish at nodal points. This enables to "trivial" modification of finite element methods. (i.e. "Randomise the finite elements"; $\phi_{i} \mapsto \phi_{i}+e_{i}$.)

Probabilistic Models for Discretisation Error

Conrad et al. [2016] and others supposed that discretisation, i.e. representation of a infinite-dimensional object

$$
x(\cdot)
$$

in a discrete form

$$
\hat{x}(\cdot)=a_{1} \phi_{1}(\cdot)+\cdots+a_{m} \phi_{m}(\cdot)
$$

is such that the error $e=x-\hat{x}$ can be reasonably modelled by a random process, such as a Gaussian process:

$$
e \sim \mathcal{G} \mathcal{P}\left(0, k_{e}\right)
$$

This implies a distribution over the unknown value of x.
In particular, when ϕ_{i} are finite elements, we can model

$$
e(\cdot)=a_{1} e_{1}(\cdot)+\cdots+a_{m} e_{m}(\cdot)
$$

where e_{i} is a Gaussian process constrained to share the same support as ϕ_{i} and vanish at nodal points. This enables to "trivial" modification of finite element methods. (i.e.
"Randomise the finite elements"; $\phi_{i} \mapsto \phi_{i}+e_{i}$.)

Bayesian vs Non-Bayesian

Properties of (some) non-Bayesian methods:

- Often trivial modification of classical code, to "inject noise"
- Computationally competitive with classical methods
- However, simple models for error e can be inappropriate - and controversial

Properties of (some) Bayesian methods:

- Statistically well-founded
- Coherent framework in which to combine methods (see Part VI)
- Computationally very expensive (at the moment)

Bayesian vs Non-Bayesian

Properties of (some) non-Bayesian methods:

- Often trivial modification of classical code, to "inject noise"
- Computationally competitive with classical methods
- However, simple models for error e can be inappropriate - and controversial

Properties of (some) Bayesian methods:

- Statistically well-founded
- Coherent framework in which to combine methods (see Part VI)
- Computationally very expensive (at the moment)

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

Conclusion

In Part V it has been argued that:

- Several extensions of Bayesian Quadrature can be developed.
- Dirichlet process mixture models are a convenient means to construct a non-parametric distribution on the space of p.d.f.s π.
- Non-Bayesian probabilistic numerical methods have been developed - but are rather different to Bayesian probabilistic numerical methods (more like a perturbation analysis?)

Open question: In what sense are filtering methods for ODEs an (approximate) Bayesian method?

END OF PART V

