Part IV

History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)
A. O'HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature and optimisation are discussed, based on representing prior information about the function in question in terms of a Gaussian process. Emphasis is placed on how different methods are appropriate when the function is cheap or expensive to evaluate. A particular case of expensive functions is a regression function, where 'evaluation' consists of gaining observations (with the small added complication of measurement error).

History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)
A. O'HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature and optimisation are discussed, based on representing prior information about the function in question in terms of a Gaussian process. Emphasis is placed on how different methods are appropriate when the function is cheap or expensive to evaluate. A particular case of expensive functions is a regression function, where 'evaluation' consists of gaining observations (with the small added complication of measurement error).

Eighth Job: Solution of PDEs

Darcy's Law

Consider a dynamical system with unknown parameters, e.g. Darcy's law:

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Darcy's Law

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Problem 1

Generally $x(t)$ does not have a closed-form. This is usually known as a forward problem.

Solution

We will construct a Bayesian Probabilistic Numerical Method for PDEs.

Darcy's Law

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Problem 1

Generally $x(t)$ does not have a closed-form. This is usually known as a forward problem.

Solution
We will construct a Bayesian Probabilistic Numerical Method for PDEs.

Darcy's Law

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Problem 2

To make predictions with the PDE, coefficients $\theta(t)$ must be estimated. This is usually known as an inverse problem.

Solution
 We will show how to propagate discretisation uncertainty from the forward problem into a (Bayesian) inverse problem.

Darcy's Law

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Problem 2

To make predictions with the PDE, coefficients $\theta(t)$ must be estimated. This is usually known as an inverse problem.

Solution

We will show how to propagate discretisation uncertainty from the forward problem into a (Bayesian) inverse problem.

Motivation

Using an inaccurate forward solver in an inverse problem can produce biased and overconfident posteriors.

Figure: Comparison of inverse problem posteriors produced using a PN forward solver (left) vs. no PN (right).

Forward Problem

Abstract Formulation

Replace the PDE operators with the abstract operators \mathcal{A} and \mathcal{B}

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Abstract Formulation

Replace the PDE operators with the abstract operators \mathcal{A} and \mathcal{B}

$$
\begin{array}{ll}
\mathcal{A} x(t)=g(t) & t \in D \\
\mathcal{B} \times(t)=b(t) & t \in \partial D
\end{array}
$$

Abstract Formulation

Replace the PDE operators with the abstract operators \mathcal{A} and \mathcal{B}

$$
\begin{array}{ll}
\mathcal{A} x(t)=g(t) & t \in D \\
\mathcal{B} x(t)=b(t) & t \in \partial D
\end{array}
$$

Generally a solution $x(t)$ is not available in closed-form. Solvers are based on discretising the problem:

- Finite Differences
- Finite Volumes
- Symmetric Collocation

Meshless Methods

Symmetric Collocation

An example of a meshless method is symmetric collocation:
Let $k\left(t, t^{\prime}\right)$ to be a positive definite function, let $T=\left\{t_{i}\right\}_{i=1}^{n}$ and let

where $\overline{\mathcal{A}}$ denotes the adjoint of \mathcal{A} and

$$
\overline{\mathcal{A}} K(t, T):=\left[\begin{array}{c}
\overline{\mathcal{A}} k\left(t, t_{1}\right) \\
\vdots \\
\overline{\mathcal{A}} k\left(t, t_{n}\right)
\end{array}\right]
$$

Symmetric Collocation

An example of a meshless method is symmetric collocation:
Let $k\left(t, t^{\prime}\right)$ to be a positive definite function, let $T=\left\{t_{i}\right\}_{i=1}^{n}$ and let

$$
\begin{aligned}
\hat{x}(t) & =\sum_{i=1}^{N} w_{i} \overline{\mathcal{A}} k\left(t, t_{i}\right) \\
& =\boldsymbol{w}^{\top} \overline{\mathcal{A}} K(t, T)
\end{aligned}
$$

where $\overline{\mathcal{A}}$ denotes the adjoint of \mathcal{A} and

$$
\overline{\mathcal{A}} K(t, T):=\left[\begin{array}{c}
\overline{\mathcal{A}} k\left(t, t_{1}\right) \\
\vdots \\
\overline{\mathcal{A}} k\left(t, t_{n}\right)
\end{array}\right] .
$$

Symmetric Collocation

For linear \mathcal{A}, the weights \boldsymbol{w} are uniquely determined by enforcing that $\mathcal{A} \hat{x}\left(t_{i}\right)=g_{i}:=g\left(t_{i}\right)$ at each $i=1, \ldots, n$:

$$
\boldsymbol{w}:=[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

so that (and we ignore boundary conditions to reduce notation)

$$
\hat{x}(t)=\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004]

What about a Bayesian Probabilistic Numerical Method?

Symmetric Collocation

For linear \mathcal{A}, the weights \boldsymbol{w} are uniquely determined by enforcing that $\mathcal{A} \hat{x}\left(t_{i}\right)=g_{i}:=g\left(t_{i}\right)$ at each $i=1, \ldots, n$:

$$
\boldsymbol{w}:=[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

so that (and we ignore boundary conditions to reduce notation)

$$
\hat{x}(t)=\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?

Symmetric Collocation

For linear \mathcal{A}, the weights \boldsymbol{w} are uniquely determined by enforcing that $\mathcal{A} \hat{x}\left(t_{i}\right)=g_{i}:=g\left(t_{i}\right)$ at each $i=1, \ldots, n$:

$$
\boldsymbol{w}:=[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

so that (and we ignore boundary conditions to reduce notation)

$$
\hat{x}(t)=\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \boldsymbol{g}
$$

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?

A Probabilistic Numerical Method

Let $P_{x}: x \sim \mathcal{G P}(0, k)$ be a Gaussian prior and consider the information operator

$$
A(x)=\left[\begin{array}{c}
\mathcal{A} x\left(t_{1}\right) \\
\vdots \\
\mathcal{A} x\left(t_{n}\right)
\end{array}\right]
$$

The Quantity of Interest here is just $Q(x)=x$.
Then the posterior $P_{x \mid a}$ is also Gaussian:

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].
Observation: The mean function is the same as in symmetric collocation!

A Probabilistic Numerical Method

Let $P_{x}: x \sim \mathcal{G} \mathcal{P}(0, k)$ be a Gaussian prior and consider the information operator

$$
A(x)=\left[\begin{array}{c}
\mathcal{A} x\left(t_{1}\right) \\
\vdots \\
\mathcal{A} x\left(t_{n}\right)
\end{array}\right] .
$$

The Quantity of Interest here is just $Q(x)=x$.
Then the posterior $P_{x \mid a}$ is also Gaussian:

$$
\begin{aligned}
P_{x \mid a}: x & \sim \mathcal{G} \mathcal{P}\left(m_{1}, \Sigma_{1}\right) \\
m_{1}(t) & =\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} g \\
\Sigma_{1}\left(t, t^{\prime}\right) & =k\left(t, t^{\prime}\right)-\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, t^{\prime}\right)
\end{aligned}
$$

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].
Observation: The mean function is the same as in symmetric collocation!

A Probabilistic Numerical Method

Let $P_{x}: x \sim \mathcal{G} \mathcal{P}(0, k)$ be a Gaussian prior and consider the information operator

$$
A(x)=\left[\begin{array}{c}
\mathcal{A} x\left(t_{1}\right) \\
\vdots \\
\mathcal{A} x\left(t_{n}\right)
\end{array}\right]
$$

The Quantity of Interest here is just $Q(x)=x$.
Then the posterior $P_{x \mid a}$ is also Gaussian:

$$
\begin{aligned}
P_{x \mid a}: x & \sim \mathcal{G} \mathcal{P}\left(m_{1}, \Sigma_{1}\right) \\
m_{1}(t) & =\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} g \\
\Sigma_{1}\left(t, t^{\prime}\right) & =k\left(t, t^{\prime}\right)-\overline{\mathcal{A}} K(t, T)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, t^{\prime}\right)
\end{aligned}
$$

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].
Observation: The mean function is the same as in symmetric collocation!

A Probabilistic Numerical Method

For the probabilistic numerical method, RKHS results reveal that:

$$
P_{x \mid a}\left\{x^{\prime}:\left\|x^{\prime}-x\right\|_{2}<\epsilon\right\}=1-O\left(\frac{h^{2 \beta-2 \rho-d}}{\epsilon}\right)
$$

- h the fill distance of $T=\left\{t_{i}\right\}_{i=1}^{n}$
- β is related to the kernel k (e.g. order of the Sobolev native space, in the case of a Matérn kernel)
- $\rho<\beta-d / 2$ the order of the differential operator \mathcal{A}
- d the dimension of D

Full details can be found in Cockayne et al. [2016].

Inverse Problem

The Inverse Problem

We have solved the forward problem...

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Now we need to incorporate the forward posterior measure $P_{x \mid a}$ into the posterior

 measure for the inverse problem, θ
The Inverse Problem

We have solved the forward problem...

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t)) & =g(t) & & t \in D \\
x(t) & =b(t) & & t \in \partial D
\end{aligned}
$$

Now we need to incorporate the forward posterior measure $P_{x \mid a}$ into the posterior measure for the inverse problem, θ

The Inverse Problem

Inverse Problem: Given noisy data e.g.

$$
y_{i}=x\left(t_{i}^{\mathrm{obs}} ; \theta\right)+\xi_{i}
$$

$i=1, \ldots, M$, estimate θ.

The Inverse Problem

Could define a misfit

$$
\|\boldsymbol{x}(\cdot ; \theta)-\boldsymbol{y}\|_{2}
$$

and seek to minimise it?

- If $\theta \in \mathbb{R}^{N}$ and $M<N$ then there will be many minimizers.
- If θ is a function then the problem will always be underdetermined.
- Noise ξ may be such that y is not attainable for any θ

The Inverse Problem

Could define a misfit

$$
\|\boldsymbol{x}(\cdot ; \theta)-\boldsymbol{y}\|_{2}
$$

and seek to minimise it?

- If $\theta \in \mathbb{R}^{N}$ and $M<N$ then there will be many minimizers.
- If θ is a function then the problem will always be underdetermined.
- Noise ξ may be such that \boldsymbol{y} is not attainable for any θ

The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

- Prior: P_{θ}, belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.

- Posterior: $P_{\theta \mid \boldsymbol{y}}$, belief about θ after observing \boldsymbol{y}.

The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

- Prior: P_{θ}, belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.:

$$
\mathcal{L}(\theta ; \boldsymbol{y})=\exp \left(-\frac{\|\boldsymbol{x}(\cdot ; \theta)-\boldsymbol{y}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Posterior: $P_{\theta \mid y}$, belief about θ after observing y.

The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

- Prior: P_{θ}, belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.:

$$
\mathcal{L}(\theta ; \boldsymbol{y})=\exp \left(-\frac{\|\boldsymbol{x}(\cdot ; \theta)-\boldsymbol{y}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Posterior: $P_{\theta \mid \boldsymbol{y}}$, belief about θ after observing \boldsymbol{y}.

The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

The posterior can be found by Bayes Theorem:

$$
\frac{\mathrm{d} P_{\theta \mid \boldsymbol{y}}}{\mathrm{d} P_{\theta}} \propto \mathcal{L}(\theta ; \boldsymbol{y})
$$

Discretisation Error

In PDE inverse problems the likelihood $\mathcal{L}(\theta ; \boldsymbol{y})$ depends on the unknown solution $x(\cdot ; \theta)$ of the PDE.

Assuming the data in the inverse problem is:

$$
\xi \sim N(0, \Gamma)
$$

implies the standard likelihood:

$$
\mathcal{L}(\theta ; \boldsymbol{y}) \sim N(\boldsymbol{y} ; x(\cdot ; \theta), \Gamma)
$$

This is intractable because $x(\cdot ; \theta)$ is unknown.

Discretisation Error

In PDE inverse problems the likelihood $\mathcal{L}(\theta ; \boldsymbol{y})$ depends on the unknown solution $x(\cdot ; \theta)$ of the PDE.

Assuming the data in the inverse problem is:

$$
\begin{array}{rlr}
y_{i} & =x\left(t_{i}^{\text {obs }}\right)+\xi_{i} & i=1, \ldots, n \\
\boldsymbol{\xi} & \sim N(\mathbf{0}, \Gamma) &
\end{array}
$$

implies the standard likelihood:

$$
\mathcal{L}(\theta ; \boldsymbol{y}) \sim N(\boldsymbol{y} ; x(\cdot ; \theta), \Gamma)
$$

This is intractable because $x(\cdot ; \theta)$ is unknown.

Discretisation Error

Common approach: replace x with \hat{x}_{N} given by some numerical solver, and "hope for the best":

$$
\hat{\mathcal{L}}_{N}(\theta ; \boldsymbol{y})=\exp \left(-\frac{\left\|\hat{\boldsymbol{x}}_{N}(\cdot ; \theta)-\boldsymbol{y}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

... which we have already seen can go wrong!
Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^{N} \rightarrow x$ transfers to a rate in the approximate posterior $P_{\theta \mid y}^{N} \rightarrow P_{\theta \mid y}$:

$$
\left|\log \hat{\mathcal{L}}_{N}(\theta ; y)-\log \mathcal{L}(\theta ; y)\right| \leq C \varphi(N)
$$

Discretisation Error

Common approach: replace x with \hat{x}_{N} given by some numerical solver, and "hope for the best":

$$
\hat{\mathcal{L}}_{N}(\theta ; \boldsymbol{y})=\exp \left(-\frac{\left\|\hat{\boldsymbol{x}}_{N}(\cdot ; \theta)-\boldsymbol{y}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

... which we have already seen can go wrong!
Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^{N} \rightarrow x$ transfers to a rate in the approximate posterior $P_{\theta \mid \boldsymbol{y}}^{N} \rightarrow P_{\theta \mid \boldsymbol{y}}$:

$$
\left|\log \hat{\mathcal{L}}_{N}(\theta ; \boldsymbol{y})-\log \mathcal{L}(\theta ; \boldsymbol{y})\right| \leq C \varphi(N)
$$

for some constant C.

But this says nothing about the error in the non-asymptotic limit!

Discretisation Error

Common approach: replace x with \hat{x}_{N} given by some numerical solver, and "hope for the best":

$$
\hat{\mathcal{L}}_{N}(\theta ; \boldsymbol{y})=\exp \left(-\frac{\left\|\hat{\boldsymbol{x}}_{N}(\cdot ; \theta)-\boldsymbol{y}\right\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

... which we have already seen can go wrong!
Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^{N} \rightarrow x$ transfers to a rate in the approximate posterior $P_{\theta \mid \boldsymbol{y}}^{N} \rightarrow P_{\theta \mid \boldsymbol{y}}$:

$$
\left|\log \hat{\mathcal{L}}_{N}(\theta ; \boldsymbol{y})-\log \mathcal{L}(\theta ; \boldsymbol{y})\right| \leq C \varphi(N)
$$

for some constant C.
But this says nothing about the error in the non-asymptotic limit!

Forward \mapsto Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise the unknown solution x according to the output $P_{x \mid a}$ of the Probabilistic Numerical Method, to obtain a "PN" likelihood:

$$
\begin{aligned}
& \mathcal{L}_{n}(\theta ; \boldsymbol{y}) \propto \int p(\boldsymbol{y} \mid \theta, x) \mathrm{d} P_{x \mid a} \\
& \Longrightarrow \boldsymbol{y} \mid \theta \sim N\left(\boldsymbol{m}_{1}, \Gamma+\Sigma_{1}\right)
\end{aligned}
$$

where m_{1} and Σ_{1} arise from the Probabilistic Numerical Method. e.g.

$$
\Sigma_{1}=K\left(T^{\mathrm{obs}}, T^{\mathrm{obs}}\right)-\overline{\mathcal{A}} K\left(T^{\mathrm{obs}}, T\right)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, T^{\mathrm{obs}}\right)
$$

This carries similar convergence results to the "standard" method as the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ is increased (strictly, as the fill distance h is decreased)

However, unlike the standard method, it provides full uncertainty quantification

Let's see a couple of applications.

Forward \mapsto Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise the unknown solution x according to the output $P_{x \mid a}$ of the Probabilistic Numerical Method, to obtain a "PN" likelihood:

$$
\begin{aligned}
& \mathcal{L}_{n}(\theta ; \boldsymbol{y}) \propto \int p(\boldsymbol{y} \mid \theta, x) \mathrm{d} P_{x \mid a} \\
& \Longrightarrow \boldsymbol{y} \mid \theta \sim N\left(\boldsymbol{m}_{1}, \Gamma+\Sigma_{1}\right)
\end{aligned}
$$

where m_{1} and Σ_{1} arise from the Probabilistic Numerical Method. e.g.

$$
\Sigma_{1}=K\left(T^{\mathrm{obs}}, T^{\mathrm{obs}}\right)-\overline{\mathcal{A}} K\left(T^{\mathrm{obs}}, T\right)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, T^{\mathrm{obs}}\right)
$$

This carries similar convergence results to the "standard" method as the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ is increased (strictly, as the fill distance h is decreased).

However, unlike the standard method, it provides full uncertainty quantification.
Let's see a couple of applications.

Forward \mapsto Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise the unknown solution x according to the output $P_{x \mid a}$ of the Probabilistic Numerical Method, to obtain a "PN" likelihood:

$$
\begin{aligned}
& \mathcal{L}_{n}(\theta ; \boldsymbol{y}) \propto \int p(\boldsymbol{y} \mid \theta, x) \mathrm{d} P_{x \mid a} \\
& \Longrightarrow \boldsymbol{y} \mid \theta \sim N\left(\boldsymbol{m}_{1}, \Gamma+\Sigma_{1}\right)
\end{aligned}
$$

where m_{1} and Σ_{1} arise from the Probabilistic Numerical Method. e.g.

$$
\Sigma_{1}=K\left(T^{\mathrm{obs}}, T^{\mathrm{obs}}\right)-\overline{\mathcal{A}} K\left(T^{\mathrm{obs}}, T\right)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, T^{\mathrm{obs}}\right)
$$

This carries similar convergence results to the "standard" method as the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ is increased (strictly, as the fill distance h is decreased).

However, unlike the standard method, it provides full uncertainty quantification.
Let's see a couple of applications.

Forward \mapsto Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise the unknown solution x according to the output $P_{x \mid a}$ of the Probabilistic Numerical Method, to obtain a "PN" likelihood:

$$
\begin{aligned}
& \mathcal{L}_{n}(\theta ; \boldsymbol{y}) \propto \int p(\boldsymbol{y} \mid \theta, x) \mathrm{d} P_{x \mid a} \\
& \Longrightarrow \boldsymbol{y} \mid \theta \sim N\left(\boldsymbol{m}_{1}, \Gamma+\Sigma_{1}\right)
\end{aligned}
$$

where m_{1} and Σ_{1} arise from the Probabilistic Numerical Method. e.g.

$$
\Sigma_{1}=K\left(T^{\mathrm{obs}}, T^{\mathrm{obs}}\right)-\overline{\mathcal{A}} K\left(T^{\mathrm{obs}}, T\right)[\mathcal{A} \overline{\mathcal{A}} K(T, T)]^{-1} \mathcal{A} K\left(T, T^{\mathrm{obs}}\right)
$$

This carries similar convergence results to the "standard" method as the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ is increased (strictly, as the fill distance h is decreased).

However, unlike the standard method, it provides full uncertainty quantification.
Let's see a couple of applications...

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Many patterns of current $c_{i j}, j=1, \ldots, N_{c}$ injected through boundary electrodes $t_{i}^{\text {obs }}$,

$$
i=1, \ldots, N_{s}
$$

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Resulting voltage measured: $y_{i}=x\left(t_{i}^{\text {obs }}\right)-x\left(t_{\text {ref }}\right)+\epsilon_{i}$

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Governing equations are essentially Darcy's law:

$$
\begin{aligned}
-\nabla \cdot(\theta(t) \nabla x(t) & =0 & & t \in D \\
\theta\left(t_{i}^{\mathrm{obs}}\right) \frac{\partial x}{\partial n}\left(t_{i}^{\mathrm{obs}}\right) & =c_{i j} & & i, \ldots, N_{S}
\end{aligned}
$$

Experimental Set-Up

Experiments due to Isaacson et al. [2004].

- Tank filled with saline.
- Three targets:
- "Heart shaped": higher conductivity.
- "Lung shaped": lower conductivity.
- 32 equally spaced electrodes.
- Simultaneously stimulated for 31 different stimulation patterns.

Experimental Set-Up

Experiments due to Isaacson et al. [2004].

- Tank filled with saline.
- Three targets:
- "Heart shaped": higher conductivity.
- "Lung shaped": lower conductivity.
- 32 equally spaced electrodes.
- Simultaneously stimulated for 31 different stimulation patterns.

A Hard Problem. . .

- High dimensional (992) observations.
- Observations are only of the boundary - weak information.
- Target $\theta(\cdot)$ is infinite-dimensional.
- The "ideal" likelihood $\mathcal{L}(\theta ; \boldsymbol{y})$ requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

Focus on varying the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ that are used.
Computation facilitated with Markov chain Monte Carlo, based on the preconditioned Crank-Nicholson proposal

A Hard Problem. . .

- High dimensional (992) observations.
- Observations are only of the boundary - weak information.
- Target $\theta(\cdot)$ is infinite-dimensional.
- The "ideal" likelihood $\mathcal{L}(\theta ; \boldsymbol{y})$ requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

$$
\begin{aligned}
& \mathcal{L}_{n}(\theta ; \boldsymbol{y}) \propto \int p(\boldsymbol{y} \mid \theta, x) \mathrm{d} P_{x \mid a} \\
& \Longrightarrow \boldsymbol{y} \mid \theta \sim N\left(\boldsymbol{m}_{1}, \Gamma+\Sigma_{1}\right) .
\end{aligned}
$$

Focus on varying the number n of points in $T=\left\{t_{i}\right\}_{i=1}^{n}$ that are used.
Computation facilitated with Markov chain Monte Carlo, based on the preconditioned Crank-Nicholson proposal.

Recovered Fields

Posterior means $m(t)=\mathbb{E}_{\mathbf{y}}[\theta(t)]$:

Variance Analysis

Ratio of (pointwise) posterior variance $v(t)=\mathbb{V}_{\boldsymbol{y}}[\theta(t)]$ computed from the PN posterior based on \mathcal{L}_{n} and the "standard" posterior based on \mathcal{L}_{N} with $n=N=96$:

Allen-Cahn

A prototypical non-linear PDE:

$$
\begin{aligned}
-\theta \nabla^{2} x(t)+\theta^{-1}\left(x(t)^{3}-x(t)\right) & =0 & & t \in(0,1)^{2} \\
x(t) & =1 & & t_{1} \in\{0,1\} ; 0<t_{2}<1 \\
x(t) & =-1 & & t_{2} \in\{0,1\} ; 0<t_{1}<1
\end{aligned}
$$

Goal: Infer θ from (16) noisy observations $y_{i}=x\left(t_{i}^{\mathrm{obs}}\right)+\epsilon_{i}$ (over a regular grid $\left\{t_{i}^{\mathrm{obs}}\right\}$ in the interior).

Allen-Cahn

A prototypical non-linear PDE:

$$
\begin{aligned}
-\theta \nabla^{2} x(t)+\theta^{-1}\left(x(t)^{3}-x(t)\right) & =0 & & t \in(0,1)^{2} \\
x(t) & =1 & & t_{1} \in\{0,1\} ; 0<t_{2}<1 \\
x(t) & =-1 & & t_{2} \in\{0,1\} ; 0<t_{1}<1
\end{aligned}
$$

True data-generating parameter was $\theta=0.04$. Leads to multiple solutions:

Allen-Cahn: A Linearisation Trick

Nonlinear PDE \Longrightarrow the conjugate Gaussian structure is broken!

Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

Allen-Cahn: A Linearisation Trick

Nonlinear PDE \Longrightarrow the conjugate Gaussian structure is broken!
Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

Allen-Cahn: A Linearisation Trick

Nonlinear PDE \Longrightarrow the conjugate Gaussian structure is broken!
Numerical disintegration?
A simpler "trick" for semi-linear PDEs:

$$
\begin{equation*}
-\theta \nabla^{2} x(t)+\theta^{-1}\left(x(t)^{3}-x(t)\right)=0 \tag{1}
\end{equation*}
$$

split the operator...

$$
\begin{align*}
-\theta \nabla^{2} x(t)-\theta^{-1} x(t) & =z \tag{2}\\
\theta^{-1} x(t)^{3} & =-z \tag{3}
\end{align*}
$$

$(1)=(2)+(3)$

Allen-Cahn: A Linearisation Trick

Nonlinear PDE \Longrightarrow the conjugate Gaussian structure is broken!
Numerical disintegration?
A simpler "trick" for semi-linear PDEs:

$$
-\theta \nabla^{2} x(t)+\theta^{-1}\left(x(t)^{3}-x(t)\right)=0
$$

...and invert

$$
\begin{aligned}
-\theta \nabla^{2} x(t)-\theta^{-1} x(t) & =z \\
x(t) & =\sqrt[3]{-\theta z}
\end{aligned}
$$

Allen-Cahn: A Linearisation Trick

Nonlinear PDE \Longrightarrow the conjugate Gaussian structure is broken!
Numerical disintegration?
A simpler "trick" for semi-linear PDEs: $\quad \Longrightarrow$ Solve the new system

$$
\begin{array}{ll}
\mathcal{A}_{1} x(t):=-\theta \nabla^{2} x(t)-\theta^{-1} x(t) & =z \\
\mathcal{A}_{2} x(t):=x(t) & =\sqrt[3]{-\theta z}
\end{array}
$$

\ldots and z can be marginalised by importance sampling ${ }^{2}$.

[^0]
Allen-Cahn: Inverse Problem

(a) Probabilistic Numerical Method

(b) Standard Method (FEA)

Comparison of posteriors for θ obtained with (a) the probabilistic PDE solver and (b) a standard PDE solver based on Finite Element Analysis (FEA).

Ninth Job: Characterise Optimal Information

Example: Optimal Information for an Integral

Original example from Sul'din (1959):
Consider

$$
\mathcal{X}=\{x:[0,1] \rightarrow \mathbb{R} \text { such that } x(0)=0\}
$$

and numerical integration:

$$
\begin{aligned}
& A(x)=\left[\begin{array}{c}
x\left(t_{1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right] \\
& Q(x)=\int_{0}^{1} x(t) \mathrm{d} t
\end{aligned}
$$

Here the prior distribution P_{x} will be the Weiner measure on \mathcal{X}.

Example: Optimal Information for an Integral

Our goal is to determine the average case optimal method (w.r.t. P_{x}) of the form

$$
b(a)=\sum_{i=1}^{n} w_{i} a_{i} \quad\left(=\sum_{i=1}^{n} w_{i} x\left(t_{i}\right)\right)
$$

i.e. choose optimal weights w_{1}, \ldots, w_{n} and knots t_{1}, \ldots, t_{n} to minimise the average error.

Optimality here is measured with the loss function $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$.

Example: Optimal Information for an Integral

Step \#1: An explicit expression for the average error

$$
\begin{aligned}
& \int[b(A(x))-Q(x)]^{2} P_{x}(\mathrm{~d} x) \\
& \quad=\int_{\mathcal{X}}\left(\sum_{i=1}^{n} w_{i} x\left(t_{i}\right)-\int_{0}^{1} x(t) \mathrm{d} t\right)^{2} P_{x}(\mathrm{~d} x)
\end{aligned}
$$

Example: Optimal Information for an Integral

Step \#1: An explicit expression for the average error

$$
\begin{aligned}
& \int[b(A(x))-Q(x)]^{2} P_{x}(\mathrm{~d} x) \\
& =\int_{\mathcal{X}}\left(\sum_{i=1}^{n} w_{i} x\left(t_{i}\right)-\int_{0}^{1} x(t) \mathrm{d} t\right)^{2} P_{x}(\mathrm{~d} x) \\
& =\int_{\mathcal{X}}\left(\int_{0}^{1} x(t) \mathrm{d} t\right)^{2} P_{x}(\mathrm{~d} x)-2 \sum_{i=1}^{n} w_{i} \int_{\mathcal{X}}\left(\int_{0}^{1} x(t) \mathrm{d} t\right) \cdot x\left(t_{i}\right) P_{x}(\mathrm{~d} x) \\
& \quad+\sum_{i, j=1}^{n} w_{i} w_{j} \operatorname{cov}\left(x\left(t_{i}\right), x\left(t_{j}\right)\right)
\end{aligned}
$$

Example: Optimal Information for an Integral

Step \#1: An explicit expression for the average error

$$
\begin{aligned}
& \int[b(A(x))-Q(x)]^{2} P_{x}(\mathrm{~d} x) \\
& =\int_{\mathcal{X}}\left(\sum_{i=1}^{n} w_{i} x\left(t_{i}\right)-\int_{0}^{1} x(t) \mathrm{d} t\right)^{2} P_{x}(\mathrm{~d} x) \\
& =\int_{\mathcal{X}}\left(\int_{0}^{1} x(t) \mathrm{d} t\right)^{2} P_{x}(\mathrm{~d} x)-2 \sum_{i=1}^{n} w_{i} \int_{\mathcal{X}}\left(\int_{0}^{1} x(t) \mathrm{d} t\right) \cdot x\left(t_{i}\right) P_{x}(\mathrm{~d} x) \\
& \quad+\sum_{i, j=1}^{n} w_{i} w_{j} \operatorname{cov}\left(x\left(t_{i}\right), x\left(t_{j}\right)\right) \quad \text { (Fubini) } \\
& \left.=\frac{1}{3}-2 \sum_{i=1}^{n} w_{i} \cdot\left(t_{i}-\frac{t_{i}^{2}}{2}\right)+\sum_{i, j=1}^{n} w_{i} w_{j} \min \left(t_{i}, t_{j}\right) \quad \text { (Def'n of } P_{x}\right)
\end{aligned}
$$

Example: Optimal Information for an Integral

Step \#2: Optimise weights given locations

$$
\text { objective }=\frac{1}{3}-2 \sum_{i=1}^{n} w_{i} \cdot\left(t_{i}-\frac{t_{i}^{2}}{2}\right)+\sum_{i, j=1}^{n} w_{i} w_{j} \min \left(t_{i}, t_{j}\right)
$$

This is a quadratic problem with solution

Example: Optimal Information for an Integral

Step \#2: Optimise weights given locations

$$
\begin{aligned}
\text { objective } & =\frac{1}{3}-2 \sum_{i=1}^{n} w_{i} \cdot\left(t_{i}-\frac{t_{i}^{2}}{2}\right)+\sum_{i, j=1}^{n} w_{i} w_{j} \min \left(t_{i}, t_{j}\right) \\
& =\frac{1}{3}-2 \boldsymbol{w} \cdot \boldsymbol{c}+\boldsymbol{w}^{\prime} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{w}
\end{aligned}
$$

This is a quadratic problem with solution

Example: Optimal Information for an Integral

Step \#2: Optimise weights given locations

$$
\begin{aligned}
\text { objective } & =\frac{1}{3}-2 \sum_{i=1}^{n} w_{i} \cdot\left(t_{i}-\frac{t_{i}^{2}}{2}\right)+\sum_{i, j=1}^{n} w_{i} w_{j} \min \left(t_{i}, t_{j}\right) \\
& =\frac{1}{3}-2 \boldsymbol{w} \cdot \boldsymbol{c}+\boldsymbol{w}^{\prime} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{w}
\end{aligned}
$$

This is a quadratic problem with solution

$$
\boldsymbol{w}=\boldsymbol{\Sigma}^{-1} \boldsymbol{c}
$$

Example: Optimal Information for an Integral

Step \#2: Optimise weights given locations

The solution corresponds to the method:

$$
b(a)=x\left(t_{1}\right) \cdot \frac{t_{2}}{2}+\sum_{i=2}^{n-1} x\left(t_{i}\right) \cdot \frac{t_{i+1}-t_{i-1}}{2}+x\left(t_{n}\right) \cdot\left(1-\frac{t_{n}+t_{n-1}}{2}\right)
$$

This is a trapezoidal rule, based on the data $x\left(t_{i}\right)$, the fact $x(0)=0$, and the assumption $x(1)=x\left(t_{n}\right)$.

Example: Optimal Information for an Integral

Step \#3: Optimise locations

Average case error of the trapezoidal rule:

$$
\text { objective }=\frac{1}{3}\left(1-t_{n}\right)^{3}+\frac{1}{12} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{3}
$$

This can be minimised with elementary calculus.
The solution corresponds to the method:

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Example: Optimal Information for an Integral

Step \#3: Optimise locations

Average case error of the trapezoidal rule:

$$
\text { objective }=\frac{1}{3}\left(1-t_{n}\right)^{3}+\frac{1}{12} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{3}
$$

This can be minimised with elementary calculus.
The solution corresponds to the method:

$$
b(a)=\frac{2}{2 n+1} \sum_{i=1}^{n} a_{i}, \quad a_{i}=x\left(t_{i}\right), \quad x_{i}=\frac{2 i}{2 n+1}
$$

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Example: Optimal Information for an Integral

Step \#3: Optimise locations

Average case error of the trapezoidal rule:

$$
\text { objective }=\frac{1}{3}\left(1-t_{n}\right)^{3}+\frac{1}{12} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{3}
$$

This can be minimised with elementary calculus.
The solution corresponds to the method:

$$
b(a)=\frac{2}{2 n+1} \sum_{i=1}^{n} a_{i}, \quad a_{i}=x\left(t_{i}\right), \quad x_{i}=\frac{2 i}{2 n+1}
$$

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Optimal Information

The contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A: \mathcal{X} \rightarrow \mathcal{A}$, such that $A \in \Lambda$ for some set Λ, and estimator $b: \mathcal{A} \rightarrow \mathcal{Q}$. Let $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$
\inf _{A \in \Lambda, b} \int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

Optimal Information

The contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A: \mathcal{X} \rightarrow \mathcal{A}$, such that $A \in \Lambda$ for some set Λ, and estimator $b: \mathcal{A} \rightarrow \mathcal{Q}$. Let $L: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$
\inf _{A \in \Lambda, b} \int L(b(A(x)), Q(x)) \mathrm{d} P_{x}
$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

Optimal Information

For Bayesian probabilistic numerical methods $B\left(P_{x}, a\right)=Q_{\#} P_{x \mid a}$, optimal information is defined as

$$
\underset{A \in \Lambda}{\operatorname{arginf}} \iint L\left(Q_{\#} P_{x \mid A(x)}(\omega), Q(x)\right) \mathrm{d} P_{x} \mathrm{~d} \omega
$$

Important point: The Bayesian probabilistic numerical method output $Q_{\#} P_{x \mid a}$ will not in general be supported on the set of Bayes acts. This presents a non-trivial constraint on the risk set...

Optimal Information

Average Case

Analysis $\stackrel{1985}{\leftrightarrow}$\begin{tabular}{c}
Bayesian Decision

Theory

$\stackrel{?}{\leftrightarrow} \quad$

Bayesian Probabilistic

Numerical Methods
\end{tabular}

Optimal Information

In Cockayne et al. [2017] we established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial

Consider the following counter-example

- P_{x} uniform
- $A(x)=1 r x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just

Optimal Information

In Cockayne et al. [2017] we established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

- $Q(x)=1[x=b]$,
- P_{x} uniform
- $A(x)=1 r x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S=\{b, c\}$

Optimal Information

In Cockayne et al. [2017] we established the following (new) result:
Let $\left(\mathcal{Q},\langle\cdot, \cdot\rangle_{\mathcal{Q}}\right)$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L\left(q, q^{\prime}\right)=\left\|q-q^{\prime}\right\|_{\mathcal{Q}}^{2}$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:
Consider the following counter-example:

- $\mathcal{X}=\{b, c, d, e\}$,
- $Q(x)=1[x=b]$,
- P_{x} uniform,
- $A(x)=1[x \in S]$, where we are allowed either $S=\{b, c\}$ or $\{b, c, d\}$,
- $L\left(q, q^{\prime}\right)=1\left[q \neq q^{\prime}\right]$.

Then average-case optimal information can be either $S=\{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S=\{b, c\}$.

Example: Optimal Information for an Integral

Return to the original example of Sul'din (1959):

From the previous result, since $\mathcal{Q}=\mathbb{R}$ is an inner-product space equipped with the loss
function $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_{x}) is:

$$
B\left(P_{x}, a\right)=N\left(\frac{2}{2 n+1} \sum_{i=1}^{n} a_{i}, \frac{1}{3(2 n+1)^{2}}\right)
$$

N.B. The variance $\frac{1}{3(2 n+1)^{2}}$ is twice the optimal average error.

Example: Optimal Information for an Integral

Return to the original example of Sul'din (1959):

From the previous result, since $\mathcal{Q}=\mathbb{R}$ is an inner-product space equipped with the loss function $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_{x}) is

N.B. The variance $\frac{1}{3(2 n+1)^{2}}$ is twice the optimal average error

Example: Optimal Information for an Integral

Return to the original example of Sul'din (1959):

From the previous result, since $\mathcal{Q}=\mathbb{R}$ is an inner-product space equipped with the loss function $L\left(q, q^{\prime}\right)=\left(q-q^{\prime}\right)^{2}$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_{x}) is:

$$
B\left(P_{x}, a\right)=\mathrm{N}\left(\frac{2}{2 n+1} \sum_{i=1}^{n} a_{i}, \frac{1}{3(2 n+1)^{2}}\right)
$$

N.B. The variance $\frac{1}{3(2 n+1)^{2}}$ is twice the optimal average error.

Conclusion

In Part IV it has been argued that:

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information - but for "nice" problems the two are identical.

END OF PART IV

Conclusion

In Part IV it has been argued that:

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information - but for "nice" problems the two are identical.

END OF PART IV

Conclusion

In Part IV it has been argued that:

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information - but for "nice" problems the two are identical.

END OF PART IV

Conclusion

In Part IV it has been argued that:

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information - but for "nice" problems the two are identical.

END OF PART IV

Conclusion

In Part IV it has been argued that:

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information - but for "nice" problems the two are identical.

END OF PART IV

[^0]: ${ }^{2}$ Details in Cockayne et al. [2016]

