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History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)

A. O’HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and
Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature
and optimisation are discussed, based on repre-
senting prior information about the function in
question in terms of a Gaussian process. Emphasis
is placed on how different methods are appropriate
when the function is cheap or expensive to evalu-
ate. A particular case of expensive functions is a
regression function, where ‘evaluation’ consists of
gaining observations (with the small added com-
plication of measurement error).

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 91 / 183



History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)

A. O’HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and
Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature
and optimisation are discussed, based on repre-
senting prior information about the function in
question in terms of a Gaussian process. Emphasis
is placed on how different methods are appropriate
when the function is cheap or expensive to evalu-
ate. A particular case of expensive functions is a
regression function, where ‘evaluation’ consists of
gaining observations (with the small added com-
plication of measurement error).

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 91 / 183



Eighth Job: Solution of PDEs
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Darcy’s Law

Consider a dynamical system with unknown parameters, e.g. Darcy’s law:

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D
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Darcy’s Law

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D

Problem 1
Generally x(t) does not have a closed-form. This is usually known as a forward problem.

Solution
We will construct a Bayesian Probabilistic Numerical Method for PDEs.
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Darcy’s Law

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D

Problem 2
To make predictions with the PDE, coefficients θ(t) must be estimated. This is usually
known as an inverse problem.

Solution
We will show how to propagate discretisation uncertainty from the forward problem into
a (Bayesian) inverse problem.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 95 / 183



Darcy’s Law

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D

Problem 2
To make predictions with the PDE, coefficients θ(t) must be estimated. This is usually
known as an inverse problem.

Solution
We will show how to propagate discretisation uncertainty from the forward problem into
a (Bayesian) inverse problem.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 95 / 183



Motivation

Using an inaccurate forward solver in an inverse problem can produce biased and
overconfident posteriors.
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Figure: Comparison of inverse problem posteriors produced using a PN forward solver (left) vs.
no PN (right).

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 96 / 183



Forward Problem
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Abstract Formulation

Replace the PDE operators with the abstract operators A and B

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D
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Abstract Formulation

Replace the PDE operators with the abstract operators A and B

Ax(t) = g(t) t ∈ D

Bx(t) = b(t) t ∈ ∂D

Generally a solution x(t) is not available in closed-form. Solvers are based on discretising
the problem:

Finite Differences

Finite Volumes

Symmetric Collocation
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Meshless Methods
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Symmetric Collocation

An example of a meshless method is symmetric collocation:

Let k(t, t′) to be a positive definite function, let T = {ti}ni=1 and let

x̂(t) =
N∑
i=1

wiĀk(t, ti )

= w>ĀK(t,T )

where Ā denotes the adjoint of A and

ĀK(t,T ) :=

Āk(t, t1)
...

Āk(t, tn)

 .
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Symmetric Collocation

For linear A, the weights w are uniquely determined by enforcing that
Ax̂(ti ) = gi := g(ti ) at each i = 1, . . . , n:

w := [AĀK(T ,T )]−1g

so that (and we ignore boundary conditions to reduce notation)

x̂(t) = ĀK(t,T )[AĀK(T ,T )]−1g .

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard
methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of
Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?
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A Probabilistic Numerical Method

Let Px : x ∼ GP(0, k) be a Gaussian prior and consider the information operator

A(x) =

 Ax(t1)
...

Ax(tn)

 .
The Quantity of Interest here is just Q(x) = x .

Then the posterior Px|a is also Gaussian:

Px|a : x ∼ GP(m1,Σ1)

m1(t) = ĀK(t,T )
[
AĀK(T ,T )

]−1 g

Σ1(t, t′) = k(t, t′)− ĀK(t,T )
[
AĀK(T ,T )

]−1AK(T , t′)

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].

Observation: The mean function is the same as in symmetric collocation!
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A Probabilistic Numerical Method

For the probabilistic numerical method, RKHS results reveal that:

Px|a{x ′ : ‖x ′ − x‖2 < ε} = 1− O

(
h2β−2ρ−d

ε

)

h the fill distance of T = {ti}ni=1

β is related to the kernel k (e.g. order of the Sobolev native space, in the case of a
Matérn kernel)

ρ < β − d/2 the order of the differential operator A
d the dimension of D

Full details can be found in Cockayne et al. [2016].
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Inverse Problem
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The Inverse Problem

We have solved the forward problem. . .

−∇ · (θ(t)∇x(t)) = g(t) t ∈ D

x(t) = b(t) t ∈ ∂D

Now we need to incorporate the forward posterior measure Px|a into the posterior
measure for the inverse problem, θ
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The Inverse Problem

Inverse Problem: Given noisy data e.g.

yi = x(tobs
i ; θ) + ξi

i = 1, . . . ,M, estimate θ.
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The Inverse Problem

Could define a misfit
‖x(·; θ)− y‖2

and seek to minimise it?

If θ ∈ RN and M < N then there will be many minimizers.

If θ is a function then the problem will always be underdetermined.

Noise ξ may be such that y is not attainable for any θ
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The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

Pθ L(θ; y) Pθ|y
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The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

Pθ L(θ; y) Pθ|y

Prior: Pθ, belief about θ before observing information.

Likelihood L: a model for “how likely” particular θ are, e.g.:

L(θ; y) = exp

(
−
‖x(·; θ)− y‖2

2

2σ2

)
Posterior: Pθ|y , belief about θ after observing y .
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The Inverse Problem

Bayesian Inverse Problem [Stuart, 2010]:

Pθ L(θ; y) Pθ|y

The posterior can be found by Bayes Theorem:

dPθ|y
dPθ

∝ L(θ; y)
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Discretisation Error

In PDE inverse problems the likelihood L(θ; y) depends on the unknown solution x(·; θ)
of the PDE.

Assuming the data in the inverse problem is:

yi = x(tobs
i ) + ξi i = 1, . . . , n

ξ ∼ N(0, Γ)

implies the standard likelihood:

L(θ; y) ∼ N(y ; x(·; θ), Γ)

This is intractable because x(·; θ) is unknown.
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Discretisation Error

Common approach: replace x with x̂N given by some numerical solver, and “hope for the
best”:

L̂N(θ; y) = exp

(
−
‖x̂N(·; θ)− y‖2

2

2σ2

)
. . . which we have already seen can go wrong!

Seminal results in Stuart [2010] shows that under certain assumptions, the convergence
of x̂N → x transfers to a rate in the approximate posterior PN

θ|y → Pθ|y :∣∣∣log L̂N(θ; y)− logL(θ; y)
∣∣∣ ≤ Cϕ(N)

for some constant C .

But this says nothing about the error in the non-asymptotic limit!
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Forward 7→ Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise
the unknown solution x according to the output Px|a of the Probabilistic Numerical
Method, to obtain a “PN” likelihood:

Ln(θ; y) ∝
∫

p(y |θ, x)dPx|a

=⇒ y |θ ∼ N(m1, Γ + Σ1)

where m1 and Σ1 arise from the Probabilistic Numerical Method. e.g.

Σ1 = K(T obs,T obs)− ĀK(T obs,T )
[
AĀK(T ,T )

]−1AK(T ,T obs)

This carries similar convergence results to the “standard” method as the number n of
points in T = {ti}ni=1 is increased (strictly, as the fill distance h is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let’s see a couple of applications...
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AĀK(T ,T )

]−1AK(T ,T obs)

This carries similar convergence results to the “standard” method as the number n of
points in T = {ti}ni=1 is increased (strictly, as the fill distance h is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let’s see a couple of applications...

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 111 / 183



Forward 7→ Inverse Problem

An elegant solution based on the Bayesian Probabilistic Numerical Method: Marginalise
the unknown solution x according to the output Px|a of the Probabilistic Numerical
Method, to obtain a “PN” likelihood:

Ln(θ; y) ∝
∫

p(y |θ, x)dPx|a

=⇒ y |θ ∼ N(m1, Γ + Σ1)

where m1 and Σ1 arise from the Probabilistic Numerical Method. e.g.

Σ1 = K(T obs,T obs)− ĀK(T obs,T )
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Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to
detect tumors.
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Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to
detect tumors.

c1j

c2j

c3j

c4j

c5j

c6j

c7j

c8j

Many patterns of current cij , j = 1, . . . ,Nc injected through boundary electrodes tobs
i ,

i = 1, . . . ,Ns
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Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to
detect tumors.

u(s1)

u(s2)

u(s3)

u(s4)

u(s5)

u(s6)

u(s7)

u(s8)

Resulting voltage measured: yi = x(tobs
i )− x(tref) + εi

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 112 / 183



Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to
detect tumors.

Governing equations are essentially Darcy’s law:

−∇ · (θ(t)∇x(t) = 0 t ∈ D

θ(tobs
i )

∂x

∂n
(tobs

i ) = cij i = 1, . . . ,NS
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Experimental Set-Up

Experiments due to Isaacson et al. [2004].

Tank filled with saline.

Three targets:
“Heart shaped”: higher conductivity.
“Lung shaped”: lower conductivity.

32 equally spaced electrodes.

Simultaneously stimulated for 31
different stimulation patterns.
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A Hard Problem. . .

High dimensional (992) observations.

Observations are only of the boundary - weak information.

Target θ(·) is infinite-dimensional.

The “ideal” likelihood L(θ; y) requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

Ln(θ; y) ∝
∫

p(y |θ, x)dPx|a

=⇒ y |θ ∼ N(m1, Γ + Σ1).

Focus on varying the number n of points in T = {ti}ni=1 that are used.

Computation facilitated with Markov chain Monte Carlo, based on the preconditioned
Crank-Nicholson proposal.
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Recovered Fields

Posterior means m(t) = Ey [θ(t)]:
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(a) n = 96
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(b) n = 127
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(c) n = 165
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Variance Analysis

Ratio of (pointwise) posterior variance v(t) = Vy [θ(t)] computed from the PN posterior
based on Ln and the “standard” posterior based on L̂N with n = N = 96:
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Allen–Cahn

A prototypical non-linear PDE:

−θ∇2x(t) + θ−1(x(t)3 − x(t)) = 0 t ∈ (0, 1)2

x(t) = 1 t1 ∈ {0, 1} ; 0 < t2 < 1

x(t) = −1 t2 ∈ {0, 1} ; 0 < t1 < 1

Goal: Infer θ from (16) noisy observations yi = x(tobs
i ) + εi (over a regular grid {tobs

i } in
the interior).
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x(t) = 1 t1 ∈ {0, 1} ; 0 < t2 < 1

x(t) = −1 t2 ∈ {0, 1} ; 0 < t1 < 1

True data-generating parameter was θ = 0.04. Leads to multiple solutions:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Negative Stable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Unstable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Positive Stable

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 117 / 183



Allen–Cahn: A Linearisation Trick

Nonlinear PDE =⇒ the conjugate Gaussian structure is broken!

Numerical disintegration?

A simpler “trick” for semi-linear PDEs:
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Allen–Cahn: A Linearisation Trick

Nonlinear PDE =⇒ the conjugate Gaussian structure is broken!

Numerical disintegration?

A simpler “trick” for semi-linear PDEs:

−θ∇2x(t) + θ−1(x(t)3 − x(t)) = 0 (1)

split the operator...

−θ∇2x(t)− θ−1x(t) = z (2)

θ−1x(t)3 = −z (3)

(1) = (2) + (3)
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Allen–Cahn: A Linearisation Trick

Nonlinear PDE =⇒ the conjugate Gaussian structure is broken!

Numerical disintegration?

A simpler “trick” for semi-linear PDEs:

−θ∇2x(t) + θ−1(x(t)3 − x(t)) = 0

...and invert

−θ∇2x(t)− θ−1x(t) = z

x(t) = 3
√
−θz
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Allen–Cahn: A Linearisation Trick

Nonlinear PDE =⇒ the conjugate Gaussian structure is broken!

Numerical disintegration?

A simpler “trick” for semi-linear PDEs: =⇒ Solve the new system

A1x(t) := −θ∇2x(t)− θ−1x(t) = z

A2x(t) := x(t) = 3
√
−θz

. . . and z can be marginalised by importance sampling2.

2Details in Cockayne et al. [2016]
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Allen–Cahn: Inverse Problem
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(a) Probabilistic Numerical Method
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(b) Standard Method (FEA)

Comparison of posteriors for θ obtained with (a) the probabilistic PDE solver and (b) a
standard PDE solver based on Finite Element Analysis (FEA).
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Ninth Job: Characterise Optimal Information
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Example: Optimal Information for an Integral

Original example from Sul’din (1959):

Consider
X = {x : [0, 1]→ R such that x(0) = 0}

and numerical integration:

A(x) =

x(t1)
...

x(tn)


Q(x) =

∫ 1

0

x(t)dt

Here the prior distribution Px will be the Weiner measure on X .
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Example: Optimal Information for an Integral

Our goal is to determine the average case optimal method (w.r.t. Px) of the form

b(a) =
n∑

i=1

wiai

(
=

n∑
i=1

wix(ti )

)

i.e. choose optimal weights w1, . . . ,wn and knots t1, . . . , tn to minimise the average error.

Optimality here is measured with the loss function L(q, q′) = (q − q′)2.
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Example: Optimal Information for an Integral

Step #1: An explicit expression for the average error

∫
[b(A(x))− Q(x)]2Px(dx)

=

∫
X

(
n∑

i=1

wix(ti )−
∫ 1

0

x(t)dt

)2

Px(dx)

=

∫
X

(∫ 1

0

x(t)dt

)2

Px(dx)− 2
n∑

i=1

wi

∫
X

(∫ 1

0

x(t)dt

)
· x(ti )Px(dx)

+
n∑

i,j=1

wiwj cov(x(ti ), x(tj)) (Fubini)

=
1

3
− 2

n∑
i=1

wi ·
(
ti −

t2
i

2

)
+

n∑
i,j=1

wiwj min(ti , tj) (Def’n of Px)
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Example: Optimal Information for an Integral

Step #2: Optimise weights given locations

objective =
1

3
− 2

n∑
i=1

wi ·
(
ti −

t2
i

2

)
+

n∑
i,j=1

wiwj min(ti , tj)

=
1

3
− 2w · c + w ′ ·Σ · w

This is a quadratic problem with solution

w = Σ−1c .
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Example: Optimal Information for an Integral

Step #2: Optimise weights given locations

The solution corresponds to the method:

b(a) = x(t1) · t2

2
+

n−1∑
i=2

x(ti ) ·
ti+1 − ti−1

2
+ x(tn) ·

(
1− tn + tn−1

2

)
This is a trapezoidal rule, based on the data x(ti ), the fact x(0) = 0, and the assumption
x(1) = x(tn).
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Example: Optimal Information for an Integral

Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective =
1

3
(1− tn)3 +

1

12

n∑
i=1

(ti − ti−1)3

This can be minimised with elementary calculus.

The solution corresponds to the method:

b(a) =
2

2n + 1

n∑
i=1

ai , ai = x(ti ), xi =
2i

2n + 1

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 126 / 183



Example: Optimal Information for an Integral

Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective =
1

3
(1− tn)3 +

1

12

n∑
i=1

(ti − ti−1)3

This can be minimised with elementary calculus.

The solution corresponds to the method:

b(a) =
2

2n + 1

n∑
i=1

ai , ai = x(ti ), xi =
2i

2n + 1

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 126 / 183



Example: Optimal Information for an Integral

Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective =
1

3
(1− tn)3 +

1

12

n∑
i=1

(ti − ti−1)3

This can be minimised with elementary calculus.

The solution corresponds to the method:

b(a) =
2

2n + 1

n∑
i=1

ai , ai = x(ti ), xi =
2i

2n + 1

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 126 / 183



Optimal Information

The contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator A : X → A, such
that A ∈ Λ for some set Λ, and estimator b : A → Q. Let L : Q×Q → R be a loss
function that is pre-specified. Then consider the minimal average case error

inf
A∈Λ,b

∫
L(b(A(x)),Q(x))dPx .

The minimiser b(·) is a non-randomised Bayes rule and the minimiser A is “optimal
information” over Λ, or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?
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Optimal Information

For Bayesian probabilistic numerical methods B(Px , a) = Q#Px|a, optimal information is
defined as

arg inf
A∈Λ

∫ ∫
L(Q#Px|A(x)(ω),Q(x))dPx dω.

Important point: The Bayesian probabilistic numerical method output Q#Px|a will not in
general be supported on the set of Bayes acts. This presents a non-trivial constraint on
the risk set...
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Optimal Information

Average Case
1985↔ Bayesian Decision

?↔ Bayesian Probabilistic
Analysis Theory Numerical Methods

Bayes 
rule
(classical)

Optimal 
(BPNM)

Contours of constant average risk

Risk set 
(classical)

Risk set 
(BPNM)
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Optimal Information

In Cockayne et al. [2017] we established the following (new) result:

Let (Q, 〈·, ·〉Q) be an inner-product space with associated norm ‖ · ‖Q and consider the
canonical loss L(q, q′) = ‖q − q′‖2

Q. Then optimal information for Bayesian probabilistic
numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

X = {b, c, d , e},
Q(x) = 1[x = b],

Px uniform,

A(x) = 1[x ∈ S ], where we are allowed either S = {b, c} or {b, c, d},
L(q, q′) = 1[q 6= q′].

Then average-case optimal information can be either S = {b, c} or {b, c, d}. On the
other hand, optimal information in the Bayesian probabilistic numerical context is just
S = {b, c}.
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Example: Optimal Information for an Integral

Return to the original example of Sul’din (1959):

From the previous result, since Q = R is an inner-product space equipped with the loss
function L(q, q′) = (q − q′)2, it follows that the optimal information for Bayesian
probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. Px) is:

B(Px , a) = N

(
2

2n + 1

n∑
i=1

ai ,
1

3(2n + 1)2

)

N.B. The variance 1
3(2n+1)2 is twice the optimal average error.
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Conclusion

In Part IV it has been argued that:

Over-confident inferences for unknown parameters in PDEs, due to ignoring
discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods
(BPNM).

However, for general (non-linear) PDEs the “offline” computations can be difficult.

Optimal information for BPNM is not always equivalent to average-case optimal
information - but for “nice” problems the two are identical.

END OF PART IV
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