Part IV

æ

メロト メポト メヨト メヨト

History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)

A. O'HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature and optimisation are discussed, based on representing prior information about the function in question in terms of a Gaussian process. Emphasis is placed on how different methods are appropriate when the function is cheap or expensive to evaluate. A particular case of expensive functions is a regression function, where 'evaluation' consists of gaining observations (with the small added complication of measurement error).

History of Probabilistic Numerical Methods

Some Bayesian Numerical Analysis (with discussion)

A. O'HAGAN, University of Nottingham

In: Bayesian Statistics (Eds. Bernardo, Berger, Dawid and Smith), 4, 345-363, 1992.

Bayesian approaches to interpolation, quadrature and optimisation are discussed, based on representing prior information about the function in question in terms of a Gaussian process. Emphasis is placed on how different methods are appropriate when the function is cheap or expensive to evaluate. A particular case of expensive functions is a regression function, where 'evaluation' consists of gaining observations (with the small added complication of measurement error).

Image: A mathematic states and a mathematic states

Eighth Job: Solution of PDEs

・ロト ・回ト ・ヨト ・

Consider a dynamical system with unknown parameters, e.g. Darcy's law:

$$-
abla \cdot (heta(t)
abla x(t)) = g(t) \quad t \in D$$
 $x(t) = b(t) \quad t \in \partial D$

э

・ロト ・回ト ・ヨト ・ヨト

$$-\nabla \cdot (\theta(t)\nabla x(t)) = g(t) \quad t \in D$$
$$x(t) = b(t) \quad t \in \partial D$$

<u>Problem 1</u> Generally x(t) does not have a closed-form. This is usually known as a forward problem.

<u>Solution</u> We will construct a Bayesian Probabilistic Numerical Method for PDEs.

・ロト ・回ト ・ヨト ・

$$-\nabla \cdot (\theta(t)\nabla x(t)) = g(t) \quad t \in D$$
$$x(t) = b(t) \quad t \in \partial D$$

Problem 1

Generally x(t) does not have a closed-form. This is usually known as a forward problem.

Solution

We will construct a Bayesian Probabilistic Numerical Method for PDEs.

・ロト ・回ト ・ヨト ・ヨ

$$\begin{aligned} -\nabla \cdot (\theta(t) \nabla x(t)) &= g(t) \quad t \in D \\ x(t) &= b(t) \quad t \in \partial D \end{aligned}$$

Problem 2

To make predictions with the PDE, coefficients $\theta(t)$ must be estimated. This is usually known as an inverse problem.

Solution

We will show how to propagate discretisation uncertainty from the forward problem into a (Bayesian) inverse problem.

Image: A math the second se

$$\begin{aligned} -\nabla \cdot (\theta(t) \nabla x(t)) &= g(t) \quad t \in D \\ x(t) &= b(t) \quad t \in \partial D \end{aligned}$$

Problem 2

To make predictions with the PDE, coefficients $\theta(t)$ must be estimated. This is usually known as an inverse problem.

<u>Solution</u>

We will show how to propagate discretisation uncertainty from the forward problem into a (Bayesian) inverse problem.

Image: A math the second se

Using an inaccurate forward solver in an inverse problem can produce biased and overconfident posteriors.

Figure: Comparison of inverse problem posteriors produced using a PN forward solver (left) vs. no PN (right).

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Forward Problem

2

メロト メロト メヨト メヨト

Replace the PDE operators with the abstract operators ${\cal A}$ and ${\cal B}$

$$\begin{aligned} -\nabla \cdot (\theta(t) \nabla x(t)) &= g(t) \quad t \in D \\ x(t) &= b(t) \quad t \in \partial D \end{aligned}$$

イロト イヨト イヨト イ

Replace the PDE operators with the abstract operators ${\cal A}$ and ${\cal B}$

 $\mathcal{A}x(t) = g(t) \quad t \in D$ $\mathcal{B}x(t) = b(t) \quad t \in \partial D$

3

・ロト ・回ト ・ヨト ・ヨト

Replace the PDE operators with the abstract operators ${\cal A}$ and ${\cal B}$

 $\mathcal{A}x(t) = g(t) \quad t \in D$ $\mathcal{B}x(t) = b(t) \quad t \in \partial D$

Generally a solution x(t) is not available in closed-form. Solvers are based on discretising the problem:

- Finite Differences
- Finite Volumes
- Symmetric Collocation

(日) (同) (三) (三)

・ロト ・回ト ・ヨト

An example of a meshless method is symmetric collocation:

Let k(t, t') to be a positive definite function, let $T = \{t_i\}_{i=1}^n$ and let

$$\hat{e}(t) = \sum_{i=1}^{N} w_i \bar{\mathcal{A}} k(t, t_i)$$
$$= \mathbf{w}^{\top} \bar{\mathcal{A}} \mathcal{K}(t, T)$$

where $\bar{\mathcal{A}}$ denotes the adjoint of \mathcal{A} and

$$ar{\mathcal{A}}\mathcal{K}(t,T) := egin{bmatrix} ar{\mathcal{A}}\mathcal{k}(t,t_1) \ dots \ ar{\mathcal{A}}\mathcal{k}(t,t_n) \end{bmatrix}.$$

A D > A P > A B > A

An example of a meshless method is symmetric collocation:

Let k(t,t') to be a positive definite function, let $T = \{t_i\}_{i=1}^n$ and let

$$\hat{x}(t) = \sum_{i=1}^{N} w_i \bar{\mathcal{A}} k(t, t_i)$$
$$= \mathbf{w}^{\top} \bar{\mathcal{A}} \mathcal{K}(t, T)$$

where $\bar{\mathcal{A}}$ denotes the adjoint of \mathcal{A} and

$$ar{\mathcal{A}}\mathcal{K}(t,\mathcal{T}):=egin{bmatrix}ar{\mathcal{A}}\mathcal{K}(t,t_1)\dots\ar{\mathcal{A}}\ar{\mathcal{K}}(t,t_n)\end{bmatrix}$$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

For linear A, the weights **w** are uniquely determined by enforcing that $A\hat{x}(t_i) = g_i := g(t_i)$ at each i = 1, ..., n:

$$\boldsymbol{w} := [\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(\mathcal{T},\mathcal{T})]^{-1}\boldsymbol{g}$$

so that (and we ignore boundary conditions to reduce notation)

$$\hat{x}(t) = \bar{\mathcal{A}}\mathcal{K}(t,T)[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(T,T)]^{-1}\boldsymbol{g}.$$

If *k* is positive definite then it defines a **Reproducing Kernel Hilbert Space** and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?

< ロ > < 同 > < 三 > < 三

For linear A, the weights **w** are uniquely determined by enforcing that $A\hat{x}(t_i) = g_i := g(t_i)$ at each i = 1, ..., n:

$$\boldsymbol{w} := [\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(\mathcal{T},\mathcal{T})]^{-1}\boldsymbol{g}$$

so that (and we ignore boundary conditions to reduce notation)

$$\hat{x}(t) = \bar{\mathcal{A}}\mathcal{K}(t,T)[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(T,T)]^{-1}\boldsymbol{g}.$$

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?

< ロ > < 同 > < 三 > < 三

For linear A, the weights **w** are uniquely determined by enforcing that $A\hat{x}(t_i) = g_i := g(t_i)$ at each i = 1, ..., n:

$$\boldsymbol{w} := [\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(\mathcal{T},\mathcal{T})]^{-1}\boldsymbol{g}$$

so that (and we ignore boundary conditions to reduce notation)

$$\hat{x}(t) = \bar{\mathcal{A}}\mathcal{K}(t,T)[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(T,T)]^{-1}\boldsymbol{g}.$$

If k is positive definite then it defines a Reproducing Kernel Hilbert Space and standard methods can be used to analyse the symmetric collocation method; e.g. Chapter 16 of Wendland [2004].

What about a Bayesian Probabilistic Numerical Method?

(日) (同) (日) (日)

Let $P_x : x \sim \mathcal{GP}(0, k)$ be a Gaussian prior and consider the information operator

$$A(x) = \begin{bmatrix} \mathcal{A}x(t_1) \\ \vdots \\ \mathcal{A}x(t_n) \end{bmatrix}$$

The Quantity of Interest here is just Q(x) = x.

Then the posterior $P_{x|a}$ is also Gaussian:

$$P_{x|a} : x \sim \mathcal{GP}(m_1, \Sigma_1)$$

$$m_1(t) = \bar{\mathcal{A}}K(t, T) \left[\mathcal{A}\bar{\mathcal{A}}K(T, T)\right]^{-1} g$$

$$\Sigma_1(t, t') = k(t, t') - \bar{\mathcal{A}}K(t, T) \left[\mathcal{A}\bar{\mathcal{A}}K(T, T)\right]^{-1} \mathcal{A}K(T, t')$$

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].

Observation: The mean function is the same as in symmetric collocation!

Let $P_x : x \sim \mathcal{GP}(0, k)$ be a Gaussian prior and consider the information operator

$$A(x) = \begin{bmatrix} A_{X}(t_{1}) \\ \vdots \\ A_{X}(t_{n}) \end{bmatrix}$$

The Quantity of Interest here is just Q(x) = x.

Then the posterior $P_{x|a}$ is also Gaussian:

$$P_{x|a} : x \sim \mathcal{GP}(m_1, \Sigma_1)$$

$$m_1(t) = \bar{\mathcal{A}}\mathcal{K}(t, T) \left[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(T, T)\right]^{-1} \mathbf{g}$$

$$\Sigma_1(t, t') = k(t, t') - \bar{\mathcal{A}}\mathcal{K}(t, T) \left[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(T, T)\right]^{-1} \mathcal{A}\mathcal{K}(T, t')$$

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].

Observation: The mean function is the same as in symmetric collocation!

Let $P_x : x \sim \mathcal{GP}(0, k)$ be a Gaussian prior and consider the information operator

$$A(x) = \begin{bmatrix} A_{X}(t_{1}) \\ \vdots \\ A_{X}(t_{n}) \end{bmatrix}$$

The Quantity of Interest here is just Q(x) = x.

Then the posterior $P_{x|a}$ is also Gaussian:

$$P_{x|a}: x \sim \mathcal{GP}(m_1, \Sigma_1)$$

$$m_1(t) = \bar{\mathcal{A}}K(t, T) \left[\mathcal{A}\bar{\mathcal{A}}K(T, T)\right]^{-1} g$$

$$\Sigma_1(t, t') = k(t, t') - \bar{\mathcal{A}}K(t, T) \left[\mathcal{A}\bar{\mathcal{A}}K(T, T)\right]^{-1} \mathcal{A}K(T, t')$$

See e.g. Cockayne et al. [2016], Särkkä [2011], Cialenco et al. [2012], Owhadi [2015].

Observation: The mean function is the same as in symmetric collocation!

For the probabilistic numerical method, RKHS results reveal that:

$$\mathsf{P}_{x|\mathfrak{a}}\{x':\|x'-x\|_2<\epsilon\}=1-\mathcal{O}\left(\frac{h^{2\beta-2\rho-d}}{\epsilon}\right)$$

- *h* the fill distance of $T = \{t_i\}_{i=1}^n$
- β is related to the kernel k (e.g. order of the Sobolev native space, in the case of a Matérn kernel)
- ho < eta d/2 the order of the differential operator ${\cal A}$
- d the dimension of D

Full details can be found in Cockayne et al. [2016].

Image: A mathematic states and a mathematic states

Inverse Problem

æ

・ロト ・四ト ・ヨト ・ヨト

We have solved the forward problem...

$$-\nabla \cdot (\theta(t)\nabla x(t)) = g(t) \quad t \in D$$
$$x(t) = b(t) \quad t \in \partial D$$

Now we need to incorporate the forward posterior measure $P_{x|z}$ into the posterior measure for the inverse problem, θ

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

We have solved the forward problem...

$$egin{aligned} -
abla \cdot (heta(t)
abla x(t)) &= g(t) \quad t \in D \ x(t) &= b(t) \quad t \in \partial D \end{aligned}$$

Now we need to incorporate the forward posterior measure $P_{x|a}$ into the posterior measure for the inverse problem, θ

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Inverse Problem: Given noisy data e.g.

$$y_i = x(t_i^{obs}; \theta) + \xi_i$$

 $i = 1, \ldots, M$, estimate θ .

・ロト ・回ト ・ヨト ・

Could define a misfit

$$\|\boldsymbol{x}(\cdot;\boldsymbol{\theta}) - \boldsymbol{y}\|_2$$

and seek to minimise it?

- If $\theta \in \mathbb{R}^N$ and M < N then there will be many minimizers.
- If θ is a function then the problem will always be underdetermined.
- Noise ξ may be such that y is not attainable for any θ

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Could define a misfit

$$\left\| \boldsymbol{x}(\cdot; \boldsymbol{\theta}) - \boldsymbol{y} \right\|_2$$

and seek to minimise it?

- If $\theta \in \mathbb{R}^N$ and M < N then there will be many minimizers.
- If θ is a function then the problem will always be underdetermined.
- Noise ξ may be such that \mathbf{y} is not attainable for any θ

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bayesian Inverse Problem [Stuart, 2010]:

$$(P_{\theta}) \longrightarrow \mathcal{L}(\theta; \mathbf{y}) \longrightarrow (P_{\theta|\mathbf{y}})$$

2

・ロト ・回ト ・ヨト ・ヨ

Bayesian Inverse Problem [Stuart, 2010]:

$$(P_{\theta}) \longrightarrow \mathcal{L}(\theta; \mathbf{y}) \longrightarrow (P_{\theta|\mathbf{y}})$$

- Prior: P_{θ} , belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.:

$$\mathcal{L}(\theta; \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}(\cdot; \theta) - \mathbf{y}\|_{2}^{2}}{2\sigma^{2}}\right)$$

• Posterior: $P_{\theta|y}$, belief about θ after observing y.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bayesian Inverse Problem [Stuart, 2010]:

$$(P_{\theta}) \longrightarrow \mathcal{L}(\theta; \mathbf{y}) \longrightarrow (P_{\theta|\mathbf{y}})$$

- Prior: P_{θ} , belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.:

$$\mathcal{L}(\theta; \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x}(\cdot; \theta) - \mathbf{y}\|_2^2}{2\sigma^2}\right)$$

• Posterior: $P_{\theta|y}$, belief about θ after observing y.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bayesian Inverse Problem [Stuart, 2010]:

$$(P_{\theta}) \longrightarrow \mathcal{L}(\theta; \mathbf{y}) \longrightarrow (P_{\theta|\mathbf{y}})$$

- Prior: P_{θ} , belief about θ before observing information.
- Likelihood \mathcal{L} : a model for "how likely" particular θ are, e.g.:

$$\mathcal{L}(heta; oldsymbol{y}) = \exp\left(-rac{\|oldsymbol{x}(\cdot; heta) - oldsymbol{y}\|_2^2}{2\sigma^2}
ight)$$

• Posterior: $P_{\theta|y}$, belief about θ after observing y.

Bayesian Inverse Problem [Stuart, 2010]:

The posterior can be found by Bayes Theorem:

$$rac{\mathrm{d} P_{ heta | oldsymbol{y}}}{\mathrm{d} P_{ heta}} \quad \propto \quad \mathcal{L}(heta; oldsymbol{y})$$

A ID > A ID > A

In PDE inverse problems the likelihood $\mathcal{L}(\theta; \mathbf{y})$ depends on the unknown solution $x(\cdot; \theta)$ of the PDE.

Assuming the data in the inverse problem is:

$$y_i = x(t_i^{obs}) + \xi_i$$
 $i = 1, ..., n$
 $\boldsymbol{\xi} \sim N(\mathbf{0}, \Gamma)$

implies the standard likelihood:

 $\mathcal{L}(\theta; \mathbf{y}) \sim N(\mathbf{y}; \mathbf{x}(\cdot; \theta), \Gamma)$

This is intractable because $x(\cdot; \theta)$ is unknown.

Image: A math a math
In PDE inverse problems the likelihood $\mathcal{L}(\theta; y)$ depends on the unknown solution $x(\cdot; \theta)$ of the PDE.

Assuming the data in the inverse problem is:

$$y_i = x(t_i^{obs}) + \xi_i$$
 $i = 1, ..., n$
 $\boldsymbol{\xi} \sim N(\mathbf{0}, \Gamma)$

implies the standard likelihood:

 $\mathcal{L}(\theta; \mathbf{y}) \sim N(\mathbf{y}; \mathbf{x}(\cdot; \theta), \Gamma)$

This is intractable because $x(\cdot; \theta)$ is unknown.

Common approach: replace x with \hat{x}_N given by some numerical solver, and "hope for the best":

$$\hat{\mathcal{L}}_{N}(heta; oldsymbol{y}) = \exp\left(-rac{\|\hat{oldsymbol{x}}_{N}(\cdot; heta) - oldsymbol{y}\|_{2}^{2}}{2\sigma^{2}}
ight)$$

... which we have already seen can go wrong!

Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^N \to x$ transfers to a rate in the approximate posterior $P^N_{P|y} \to P_{P|y}$:

$$\left|\log \hat{\mathcal{L}}_N(heta; \mathbf{y}) - \log \mathcal{L}(heta; \mathbf{y})\right| \leq C \varphi(N)$$

for some constant C.

But this says nothing about the error in the non-asymptotic limit!

• • • • • • • • • • • • •

Common approach: replace x with \hat{x}_N given by some numerical solver, and "hope for the best":

$$\hat{\mathcal{L}}_{N}(heta; oldsymbol{y}) = \exp\left(-rac{\|\hat{oldsymbol{x}}_{N}(\cdot; heta) - oldsymbol{y}\|_{2}^{2}}{2\sigma^{2}}
ight)$$

... which we have already seen can go wrong!

Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^N \to x$ transfers to a rate in the approximate posterior $P^N_{\theta|\mathbf{y}} \to P_{\theta|\mathbf{y}}$:

$$\left|\log \hat{\mathcal{L}}_{N}(heta; oldsymbol{y}) - \log \mathcal{L}(heta; oldsymbol{y})
ight| \leq C arphi(N)$$

for some constant C.

But this says nothing about the error in the non-asymptotic limit!

(日) (同) (日) (日)

Common approach: replace x with \hat{x}_N given by some numerical solver, and "hope for the best":

$$\hat{\mathcal{L}}_{N}(heta; oldsymbol{y}) = \exp\left(-rac{\|\hat{oldsymbol{x}}_{N}(\cdot; heta) - oldsymbol{y}\|_{2}^{2}}{2\sigma^{2}}
ight)$$

... which we have already seen can go wrong!

Seminal results in Stuart [2010] shows that under certain assumptions, the convergence of $\hat{x}^N \to x$ transfers to a rate in the approximate posterior $P^N_{\theta|y} \to P_{\theta|y}$:

$$\left|\log \hat{\mathcal{L}}_{N}(heta; oldsymbol{y}) - \log \mathcal{L}(heta; oldsymbol{y})
ight| \leq C arphi(N)$$

for some constant C.

But this says nothing about the error in the non-asymptotic limit!

(日) (同) (日) (日)

$$\begin{split} \mathcal{L}_n(\boldsymbol{\theta}; \boldsymbol{y}) &\propto \int \boldsymbol{\rho}(\boldsymbol{y} | \boldsymbol{\theta}, \boldsymbol{x}) \mathrm{d} \boldsymbol{P}_{\boldsymbol{x} | \boldsymbol{a}} \\ \implies \boldsymbol{y} | \boldsymbol{\theta} &\sim \mathcal{N}(\boldsymbol{m}_1, \boldsymbol{\Gamma} + \boldsymbol{\Sigma}_1) \end{split}$$

where m_1 and Σ_1 arise from the Probabilistic Numerical Method. e.g.

$$\boldsymbol{\Sigma}_{1} = \boldsymbol{K}(\boldsymbol{T}^{obs},\boldsymbol{T}^{obs}) - \bar{\mathcal{A}}\boldsymbol{K}(\boldsymbol{T}^{obs},\boldsymbol{T}) \left[\mathcal{A}\bar{\mathcal{A}}\boldsymbol{K}(\boldsymbol{T},\boldsymbol{T})\right]^{-1} \mathcal{A}\boldsymbol{K}(\boldsymbol{T},\boldsymbol{T}^{obs})$$

This carries similar convergence results to the "standard" method as the number *n* of points in $T = \{t_i\}_{i=1}^n$ is increased (strictly, as the fill distance *h* is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let's see a couple of applications...

イロト 不得下 イヨト イヨト

$$\mathcal{L}_n(\theta; \mathbf{y}) \propto \int p(\mathbf{y}|\theta, x) \mathrm{d}P_{x|\theta}$$

 $\implies \mathbf{y}|\theta \sim N(\mathbf{m}_1, \Gamma + \Sigma_1)$

where m_1 and Σ_1 arise from the Probabilistic Numerical Method. e.g.

$$\Sigma_{1} = \mathcal{K}(\mathcal{T}^{obs}, \mathcal{T}^{obs}) - \bar{\mathcal{A}}\mathcal{K}(\mathcal{T}^{obs}, \mathcal{T}) \left[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(\mathcal{T}, \mathcal{T}) \right]^{-1} \mathcal{A}\mathcal{K}(\mathcal{T}, \mathcal{T}^{obs})$$

This carries similar convergence results to the "standard" method as the number *n* of points in $T = \{t_i\}_{i=1}^n$ is increased (strictly, as the fill distance *h* is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let's see a couple of applications...

イロト 不得下 イヨト イヨト

$$\mathcal{L}_n(\theta; \mathbf{y}) \propto \int p(\mathbf{y}|\theta, x) \mathrm{d}P_{x|\theta}$$

 $\implies \mathbf{y}|\theta \sim N(\mathbf{m}_1, \Gamma + \Sigma_1)$

where m_1 and Σ_1 arise from the Probabilistic Numerical Method. e.g.

$$\Sigma_{1} = \mathcal{K}(\mathcal{T}^{obs}, \mathcal{T}^{obs}) - \bar{\mathcal{A}}\mathcal{K}(\mathcal{T}^{obs}, \mathcal{T}) \left[\mathcal{A}\bar{\mathcal{A}}\mathcal{K}(\mathcal{T}, \mathcal{T}) \right]^{-1} \mathcal{A}\mathcal{K}(\mathcal{T}, \mathcal{T}^{obs})$$

This carries similar convergence results to the "standard" method as the number *n* of points in $T = \{t_i\}_{i=1}^n$ is increased (strictly, as the fill distance *h* is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let's see a couple of applications...

イロト イポト イヨト イヨト

$$\mathcal{L}_n(\theta; \mathbf{y}) \propto \int p(\mathbf{y}|\theta, x) \mathrm{d}P_{x|\theta}$$

 $\implies \mathbf{y}|\theta \sim N(\mathbf{m}_1, \Gamma + \Sigma_1)$

where m_1 and Σ_1 arise from the Probabilistic Numerical Method. e.g.

$$\boldsymbol{\Sigma}_1 = \mathcal{K}(\boldsymbol{T}^{obs}, \boldsymbol{T}^{obs}) - \bar{\mathcal{A}}\mathcal{K}(\boldsymbol{T}^{obs}, \boldsymbol{T}) \left[\mathcal{A} \bar{\mathcal{A}} \mathcal{K}(\boldsymbol{T}, \boldsymbol{T}) \right]^{-1} \mathcal{A} \mathcal{K}(\boldsymbol{T}, \boldsymbol{T}^{obs})$$

This carries similar convergence results to the "standard" method as the number *n* of points in $T = \{t_i\}_{i=1}^n$ is increased (strictly, as the fill distance *h* is decreased).

However, unlike the standard method, it provides full uncertainty quantification.

Let's see a couple of applications...

イロト イポト イヨト イヨト

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Many patterns of current c_{ij} , $j = 1, ..., N_c$ injected through boundary electrodes t_i^{obs} , $i = 1, ..., N_s$

< □ > < ^[] >

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Resulting voltage measured: $y_i = x(t_i^{obs}) - x(t_{ref}) + \epsilon_i$

Image: A matrix and a matrix

Electrical Impedance Tomography

A medical imaging technique. Goal: reconstruct interior conductivity field of a patient, to detect tumors.

Governing equations are essentially Darcy's law:

$$\begin{aligned} -\nabla \cdot (\theta(t) \nabla x(t) &= 0 & t \in D \\ \theta(t_i^{\text{obs}}) \frac{\partial x}{\partial n}(t_i^{\text{obs}}) &= \mathbf{c}_{ij} & i = 1, \dots, N_S \end{aligned}$$

A D > A B > A B > A

Experiments due to Isaacson et al. [2004].

- Tank filled with saline.
- Three targets:
 - "Heart shaped": higher conductivity.
 - "Lung shaped": lower conductivity.
- 32 equally spaced electrodes.

Image: A matrix and a matrix

• Simultaneously stimulated for 31 different stimulation patterns.

Experiments due to Isaacson et al. [2004].

- Tank filled with saline.
- Three targets:
 - "Heart shaped": higher conductivity.
 - "Lung shaped": lower conductivity.
- 32 equally spaced electrodes.

< □ > < ^[] >

Simultaneously stimulated for 31 different stimulation patterns.

- High dimensional (992) observations.
- Observations are only of the boundary weak information.
- Target $\theta(\cdot)$ is infinite-dimensional.
- The "ideal" likelihood $\mathcal{L}(\theta; \mathbf{y})$ requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

$$\mathcal{L}_n(\theta; \mathbf{y}) \propto \int p(\mathbf{y}|\theta, \mathbf{x}) \mathrm{d}P_{\mathbf{x}|\theta}$$

 $\implies \mathbf{y}|\theta \sim N(\mathbf{m}_1, \Gamma + \Sigma_1).$

Focus on varying the number *n* of points in $T = \{t_i\}_{i=1}^n$ that are used.

Computation facilitated with Markov chain Monte Carlo, based on the preconditioned Crank-Nicholson proposal.

< □ > < 同 > < 回 > < Ξ > < Ξ

- High dimensional (992) observations.
- Observations are only of the boundary weak information.
- Target $\theta(\cdot)$ is infinite-dimensional.
- The "ideal" likelihood $\mathcal{L}(\theta; \mathbf{y})$ requires exact solution of the PDE.

Posteriors obtained using the PN likelihood

$$\begin{split} \mathcal{L}_n(\boldsymbol{\theta}; \boldsymbol{y}) &\propto \int \boldsymbol{\rho}(\boldsymbol{y} | \boldsymbol{\theta}, \boldsymbol{x}) \mathrm{d} \boldsymbol{P}_{\boldsymbol{x} | \boldsymbol{a}} \\ \implies \boldsymbol{y} | \boldsymbol{\theta} &\sim \mathcal{N}(\boldsymbol{m}_1, \boldsymbol{\Gamma} + \boldsymbol{\Sigma}_1). \end{split}$$

Focus on varying the number *n* of points in $T = \{t_i\}_{i=1}^n$ that are used.

Computation facilitated with Markov chain Monte Carlo, based on the preconditioned Crank-Nicholson proposal.

< ロ > < 同 > < 三 > < 三

Posterior means $m(t) = \mathbb{E}_{y}[\theta(t)]$:

・ロト ・回ト ・ヨト ・

Ratio of (pointwise) posterior variance $v(t) = \mathbb{V}_{y}[\theta(t)]$ computed from the PN posterior based on \mathcal{L}_{n} and the "standard" posterior based on $\hat{\mathcal{L}}_{N}$ with n = N = 96:

< □ > < ^[] >

Allen–Cahn

A prototypical non-linear PDE:

$$egin{aligned} &- heta
abla^2 x(t) + heta^{-1}(x(t)^3 - x(t)) = 0 & t \in (0,1)^2 \ & x(t) = 1 & t_1 \in \{0,1\}\,; 0 < t_2 < 1 \ & x(t) = -1 & t_2 \in \{0,1\}\,; 0 < t_1 < 1 \end{aligned}$$

Goal: Infer θ from (16) noisy observations $y_i = x(t_i^{obs}) + \epsilon_i$ (over a regular grid $\{t_i^{obs}\}$ in the interior).

3

メロト メポト メヨト メヨ

Allen–Cahn

A prototypical non-linear PDE:

$$egin{aligned} &- heta
abla^2 x(t) + heta^{-1}(x(t)^3 - x(t)) = 0 & t \in (0,1)^2 \ & x(t) = 1 & t_1 \in \{0,1\}\,; 0 < t_2 < 1 \ & x(t) = -1 & t_2 \in \{0,1\}\,; 0 < t_1 < 1 \end{aligned}$$

True data-generating parameter was $\theta = 0.04$. Leads to multiple solutions:

< □ > < ^[] >

Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

A B > A B >

Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

$$-\theta \nabla^2 x(t) + \theta^{-1}(x(t)^3 - x(t)) = 0$$
 (1)

split the operator...

$$-\theta \nabla^2 x(t) - \theta^{-1} x(t) = z$$
(2)
$$\theta^{-1} x(t)^3 = -z$$
(3)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(1) = (2) + (3)

Numerical disintegration?

A simpler "trick" for semi-linear PDEs:

$$-\theta \nabla^2 x(t) + \theta^{-1}(x(t)^3 - x(t)) = 0$$

...and invert

$$egin{aligned} &- heta
abla^2 x(t) - heta^{-1} x(t) = z \ &x(t) = \sqrt[3]{- heta z} \end{aligned}$$

A D > A B > A B > A

Nonlinear PDE \implies the conjugate Gaussian structure is broken! Numerical disintegration?

A simpler "trick" for semi-linear PDEs: \implies Solve the new system

$$\begin{aligned} \mathcal{A}_1 x(t) &:= -\theta \nabla^2 x(t) - \theta^{-1} x(t) &= z \\ \mathcal{A}_2 x(t) &:= x(t) &= \sqrt[3]{-\theta z} \end{aligned}$$

 \ldots and z can be marginalised by importance sampling².

²Details in Cockayne et al. [2016]

< □ > < ^[] >

Allen-Cahn: Inverse Problem

Comparison of posteriors for θ obtained with (a) the probabilistic PDE solver and (b) a standard PDE solver based on Finite Element Analysis (FEA).

< 口 > < 同

Ninth Job: Characterise Optimal Information

Image: A matching of the second se

Original example from Sul'din (1959):

Consider

$$\mathcal{X} = \{x : [0,1] \rightarrow \mathbb{R} \text{ such that } x(0) = 0\}$$

and numerical integration:

$$A(x) = \begin{bmatrix} x(t_1) \\ \vdots \\ x(t_n) \end{bmatrix}$$
$$Q(x) = \int_0^1 x(t) dt$$

Here the prior distribution P_x will be the Weiner measure on \mathcal{X} .

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our goal is to determine the average case optimal method (w.r.t. P_x) of the form

$$b(a) = \sum_{i=1}^{n} w_i a_i \qquad \qquad \left(= \sum_{i=1}^{n} w_i x(t_i) \right)$$

i.e. choose optimal weights w_1, \ldots, w_n and knots t_1, \ldots, t_n to minimise the average error.

Optimality here is measured with the loss function $L(q, q') = (q - q')^2$.

A D N A P N A B N A

Step #1: An explicit expression for the average error

$$\begin{split} \int [b(\mathcal{A}(x)) - Q(x)]^2 P_x(\mathrm{d}x) \\ &= \int_{\mathcal{X}} \left(\sum_{i=1}^n w_i x(t_i) - \int_0^1 x(t) \mathrm{d}t \right)^2 P_x(\mathrm{d}x) \\ &= \int_{\mathcal{X}} \left(\int_0^1 x(t) \mathrm{d}t \right)^2 P_x(\mathrm{d}x) - 2 \sum_{i=1}^n w_i \int_{\mathcal{X}} \left(\int_0^1 x(t) \mathrm{d}t \right) \cdot x(t_i) P_x(\mathrm{d}x) \\ &+ \sum_{i,j=1}^n w_i w_j \operatorname{cov}(x(t_i), x(t_j)) \quad (\text{Fubini}) \\ &= \frac{1}{3} - 2 \sum_{i=1}^n w_i \cdot \left(t_i - \frac{t_i^2}{2} \right) + \sum_{i,j=1}^n w_i w_j \min(t_i, t_j) \quad (\text{Def'n of } P_x) \end{split}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Step #1: An explicit expression for the average error

$$\begin{split} \int [b(A(x)) - Q(x)]^2 P_x(dx) \\ &= \int_{\mathcal{X}} \left(\sum_{i=1}^n w_i x(t_i) - \int_0^1 x(t) dt \right)^2 P_x(dx) \\ &= \int_{\mathcal{X}} \left(\int_0^1 x(t) dt \right)^2 P_x(dx) - 2 \sum_{i=1}^n w_i \int_{\mathcal{X}} \left(\int_0^1 x(t) dt \right) \cdot x(t_i) P_x(dx) \\ &+ \sum_{i,j=1}^n w_i w_j \operatorname{cov}(x(t_i), x(t_j)) \quad (\text{Fubini}) \\ &= \frac{1}{3} - 2 \sum_{i=1}^n w_i \cdot \left(t_i - \frac{t_i^2}{2} \right) + \sum_{i,j=1}^n w_i w_j \min(t_i, t_j) \quad (\text{Def'n of } P_x) \end{split}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Step #1: An explicit expression for the average error

$$\begin{split} \int [b(A(x)) - Q(x)]^2 P_x(dx) \\ &= \int_{\mathcal{X}} \left(\sum_{i=1}^n w_i x(t_i) - \int_0^1 x(t) dt \right)^2 P_x(dx) \\ &= \int_{\mathcal{X}} \left(\int_0^1 x(t) dt \right)^2 P_x(dx) - 2 \sum_{i=1}^n w_i \int_{\mathcal{X}} \left(\int_0^1 x(t) dt \right) \cdot x(t_i) P_x(dx) \\ &+ \sum_{i,j=1}^n w_i w_j \operatorname{cov}(x(t_i), x(t_j)) \quad (\text{Fubini}) \\ &= \frac{1}{3} - 2 \sum_{i=1}^n w_i \cdot \left(t_i - \frac{t_i^2}{2} \right) + \sum_{i,j=1}^n w_i w_j \min(t_i, t_j) \quad (\text{Def'n of } P_x) \end{split}$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: Optimal Information for an Integral

Step #2: Optimise weights given locations

objective =
$$\frac{1}{3} - 2\sum_{i=1}^{n} w_i \cdot \left(t_i - \frac{t_i^2}{2}\right) + \sum_{i,j=1}^{n} w_i w_j \min(t_i, t_j)$$

= $\frac{1}{3} - 2w \cdot c + w' \cdot \Sigma \cdot w$

This is a quadratic problem with solution

$$w=\Sigma^{-1}c.$$

Step #2: Optimise weights given locations

objective =
$$\frac{1}{3} - 2\sum_{i=1}^{n} w_i \cdot \left(t_i - \frac{t_i^2}{2}\right) + \sum_{i,j=1}^{n} w_i w_j \min(t_i, t_j)$$

= $\frac{1}{3} - 2 \mathbf{w} \cdot \mathbf{c} + \mathbf{w}' \cdot \mathbf{\Sigma} \cdot \mathbf{w}$

This is a quadratic problem with solution

$$w=\Sigma^{-1}c.$$

A D > A B > A B > A

Step #2: Optimise weights given locations

objective =
$$\frac{1}{3} - 2\sum_{i=1}^{n} w_i \cdot \left(t_i - \frac{t_i^2}{2}\right) + \sum_{i,j=1}^{n} w_i w_j \min(t_i, t_j)$$

= $\frac{1}{3} - 2w \cdot c + w' \cdot \Sigma \cdot w$

This is a quadratic problem with solution

$$w = \Sigma^{-1} c.$$

Image: A math the second se

Step #2: Optimise weights given locations

The solution corresponds to the method:

$$b(a) = x(t_1) \cdot \frac{t_2}{2} + \sum_{i=2}^{n-1} x(t_i) \cdot \frac{t_{i+1} - t_{i-1}}{2} + x(t_n) \cdot \left(1 - \frac{t_n + t_{n-1}}{2}\right)$$

This is a trapezoidal rule, based on the data $x(t_i)$, the fact x(0) = 0, and the assumption $x(1) = x(t_n)$.

Image: A math the second se
Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective
$$= \frac{1}{3}(1-t_n)^3 + \frac{1}{12}\sum_{i=1}^n(t_i-t_{i-1})^3$$

This can be minimised with elementary calculus.

The solution corresponds to the method:

$$b(a) = rac{2}{2n+1} \sum_{i=1}^{n} a_i, \quad a_i = x(t_i), \quad x_i = rac{2i}{2n+1}$$

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective
$$= \frac{1}{3}(1-t_n)^3 + \frac{1}{12}\sum_{i=1}^n(t_i-t_{i-1})^3$$

This can be minimised with elementary calculus.

The solution corresponds to the method:

$$b(a) = rac{2}{2n+1} \sum_{i=1}^{n} a_i, \quad a_i = x(t_i), \quad x_i = rac{2i}{2n+1}$$

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

Step #3: Optimise locations

Average case error of the trapezoidal rule:

objective
$$= \frac{1}{3}(1-t_n)^3 + \frac{1}{12}\sum_{i=1}^n(t_i-t_{i-1})^3$$

This can be minimised with elementary calculus.

The solution corresponds to the method:

$$b(a) = rac{2}{2n+1} \sum_{i=1}^{n} a_i, \quad a_i = x(t_i), \quad x_i = rac{2i}{2n+1}$$

so that the average case optimal method has evenly spaced knots.

But what about optimal information for Bayesian Probabilistic Numerical Methods?

The contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A : \mathcal{X} \to \mathcal{A}$, such that $A \in \Lambda$ for some set Λ , and estimator $b : \mathcal{A} \to \mathcal{Q}$. Let $L : \mathcal{Q} \times \mathcal{Q} \to \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$\inf_{A\in\Lambda,b}\int L(b(A(x)),Q(x))\mathrm{d}P_x.$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ , or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

The contribution of Kadane and Wasilkowski [1985]:

Consider a classical numerical method (A, b) with information operator $A : \mathcal{X} \to \mathcal{A}$, such that $A \in \Lambda$ for some set Λ , and estimator $b : \mathcal{A} \to \mathcal{Q}$. Let $L : \mathcal{Q} \times \mathcal{Q} \to \mathbb{R}$ be a loss function that is pre-specified. Then consider the minimal average case error

$$\inf_{A\in\Lambda,b}\int L(b(A(x)),Q(x))\mathrm{d}P_x.$$

The minimiser $b(\cdot)$ is a non-randomised Bayes rule and the minimiser A is "optimal information" over Λ , or optimal experimental design for this numerical task.

Generalisation of optimal information to probabilistic numerical methods?

For Bayesian probabilistic numerical methods $B(P_x, a) = Q_{\#}P_{x|a}$, optimal information is defined as

$$\underset{A \in \Lambda}{\operatorname{arg inf}} \int \int L(Q_{\#}P_{x|A(x)}(\omega), Q(x)) \mathrm{d}P_x \, \mathrm{d}\omega.$$

Important point: The Bayesian probabilistic numerical method output $Q_{\#}P_{\times|a}$ will <u>not</u> in general be supported on the set of Bayes acts. This presents a non-trivial constraint on the risk set...

Image: A mathematic states and a mathematic states

Optimal Information

イロト イヨト イヨト イヨト

In Cockayne et al. [2017] we established the following (new) result:

Let $(\mathcal{Q}, \langle \cdot, \cdot \rangle_{\mathcal{Q}})$ be an inner-product space with associated norm $\| \cdot \|_{\mathcal{Q}}$ and consider the canonical loss $L(q, q') = \|q - q'\|_{\mathcal{Q}}^2$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

- $\mathcal{X} = \{b, c, d, e\},\$
- Q(x) = 1[x = b],
- P_x uniform,
- $A(x) = 1[x \in S]$, where we are allowed either $S = \{b, c\}$ or $\{b, c, d\}$,
- $L(q, q') = 1[q \neq q'].$

Then average-case optimal information can be either $S = \{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S = \{b, c\}$.

• • • • • • • • • • • • •

In Cockayne et al. [2017] we established the following (new) result:

Let $(\mathcal{Q}, \langle \cdot, \cdot \rangle_{\mathcal{Q}})$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L(q, q') = \|q - q'\|_{\mathcal{Q}}^2$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

- $\mathcal{X} = \{b, c, d, e\},\$
- Q(x) = 1[x = b],
- P_x uniform,
- $A(x) = 1[x \in S]$, where we are allowed either $S = \{b, c\}$ or $\{b, c, d\}$,
- $L(q, q') = 1[q \neq q'].$

Then average-case optimal information can be either $S = \{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S = \{b, c\}$.

• • • • • • • • • • • • •

In Cockayne et al. [2017] we established the following (new) result:

Let $(\mathcal{Q}, \langle \cdot, \cdot \rangle_{\mathcal{Q}})$ be an inner-product space with associated norm $\|\cdot\|_{\mathcal{Q}}$ and consider the canonical loss $L(q, q') = \|q - q'\|_{\mathcal{Q}}^2$. Then optimal information for Bayesian probabilistic numerical methods coincides with average-case optimal information.

The assumption is non-trivial:

Consider the following counter-example:

- $\mathcal{X} = \{b, c, d, e\},\$
- Q(x) = 1[x = b],
- P_x uniform,
- $A(x) = 1[x \in S]$, where we are allowed either $S = \{b, c\}$ or $\{b, c, d\}$,
- $L(q, q') = 1[q \neq q'].$

Then average-case optimal information can be either $S = \{b, c\}$ or $\{b, c, d\}$. On the other hand, optimal information in the Bayesian probabilistic numerical context is just $S = \{b, c\}$.

Return to the original example of Sul'din (1959):

From the previous result, since $Q = \mathbb{R}$ is an inner-product space equipped with the loss function $L(q, q') = (q - q')^2$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_x) is:

$$B(P_x, a) = N\left(\frac{2}{2n+1}\sum_{i=1}^n a_i, \frac{1}{3(2n+1)^2}\right)$$

N.B. The variance $\frac{1}{3(2n+1)^2}$ is <u>twice</u> the optimal average error.

Return to the original example of Sul'din (1959):

From the previous result, since $Q = \mathbb{R}$ is an inner-product space equipped with the loss function $L(q, q') = (q - q')^2$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_x) is:

$$B(P_x, a) = N\left(\frac{2}{2n+1}\sum_{i=1}^n a_i, \frac{1}{3(2n+1)^2}\right)$$

N.B. The variance $\frac{1}{3(2n+1)^2}$ is <u>twice</u> the optimal average error.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Return to the original example of Sul'din (1959):

From the previous result, since $Q = \mathbb{R}$ is an inner-product space equipped with the loss function $L(q, q') = (q - q')^2$, it follows that the optimal information for Bayesian probabilistic numerical method coincides with average case optimal information.

Thus the optimal Bayesian Probabilistic Numerical Method (w.r.t. P_x) is:

$$B(P_x, a) = N\left(\frac{2}{2n+1}\sum_{i=1}^n a_i, \frac{1}{3(2n+1)^2}\right)$$

N.B. The variance $\frac{1}{3(2n+1)^2}$ is <u>twice</u> the optimal average error.

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information but for "nice" problems the two are identical.

END OF PART IV

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information but for "nice" problems the two are identical.

END OF PART IV

Image: A match the second s

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information but for "nice" problems the two are identical.

END OF PART IV

Image: A match the second s

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information but for "nice" problems the two are identical.

END OF PART IV

- Over-confident inferences for unknown parameters in PDEs, due to ignoring discretisation error, can be mitigated with Bayesian Probabilistic Numerical Methods (BPNM).
- However, for general (non-linear) PDEs the "offline" computations can be difficult.
- Optimal information for BPNM is not always equivalent to average-case optimal information but for "nice" problems the two are identical.

END OF PART IV