Part III

æ

メロト メロト メヨト メヨト

Average Case ϵ -Complexity in Computer Science: A Bayesian View

J. B. KADANE, Carnegie-Mellon University; G. W. WASILKOWSKI, Columbia University/

In Bayesian Statistics 2, Proceedings of the Second Valencia International Meeting (pp. 361–374), 1985.

Relations between average case ϵ -complexity and Bayesian Statistics are discussed. An algorithm corresponds to a decision function and the choice of information to the choice of an experiment. [...] We hope that the relation reported here can lead to further fruitful results for both fields.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Average Case ϵ -Complexity in Computer Science: A Bayesian View

J. B. KADANE, Carnegie-Mellon University; G. W. WASILKOWSKI, Columbia University/

In Bayesian Statistics 2, Proceedings of the Second Valencia International Meeting (pp. 361–374), 1985.

Relations between average case ϵ -complexity and Bayesian Statistics are discussed. An algorithm corresponds to a decision function and the choice of information to the choice of an experiment. [...] We hope that the relation reported here can lead to further fruitful results for both fields.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- a prior measure P_x is placed on X
- a posterior measure $P_{x|z}$ is defined as the "restriction of P_x to those functions $x\in\mathcal{X}$ for which

$$A(x) = a$$
 e.g. $A(x) = \begin{bmatrix} -\Delta x(t_1) \\ \vdots \\ -\Delta x(t_n) \end{bmatrix} = a$

is satisfied" (to be formalised).

 \Rightarrow Principled and general uncertainty quantification for numerical methods.

- a *prior* measure P_x is placed on \mathcal{X}
- a posterior measure $P_{x|z}$ is defined as the "restriction of P_x to those functions $x\in\mathcal{X}$ for which

$$A(x) = a$$
 e.g. $A(x) = \begin{bmatrix} -\Delta x(t_1) \\ \vdots \\ -\Delta x(t_n) \end{bmatrix} = a$

is satisfied" (to be formalised).

 \Rightarrow Principled and general uncertainty quantification for numerical methods.

- a *prior* measure P_x is placed on \mathcal{X}
- \bullet a *posterior* measure $P_{x|a}$ is defined as the "restriction of P_x to those functions $x\in\mathcal{X}$ for which

$$A(x) = a$$
 e.g. $A(x) = \begin{bmatrix} -\Delta x(t_1) \\ \vdots \\ -\Delta x(t_n) \end{bmatrix} = a$

is satisfied" (to be formalised).

Principled and general uncertainty quantification for numerical methods.

- a *prior* measure P_x is placed on \mathcal{X}
- \bullet a *posterior* measure $P_{x|a}$ is defined as the "restriction of P_x to those functions $x\in\mathcal{X}$ for which

$$A(x) = a$$
 e.g. $A(x) = \begin{bmatrix} -\Delta x(t_1) \\ \vdots \\ -\Delta x(t_n) \end{bmatrix} = a$

is satisfied" (to be formalised).

 \implies Principled and general uncertainty quantification for numerical methods.

Sixth Job: Analysis of the Gaussian Case

Image: A matching of the second se

2

イロト イロト イヨト イ

Let \mathcal{X} be a Hilbert space (i.e. a complete inner product space) of real-valued functions on D. Let $L_t : x \mapsto x(t)$ denote the evaluation functional at a point $t \in D$. Then \mathcal{X} is a reproducing kernel Hilbert space (RKHS) if there exists C such that

 $|L_t x| \leq C \|x\|_{\mathcal{X}}$

for all $x \in \mathcal{X}$.

Riesz Representation Theorem

Let \mathcal{X}^* denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto \langle \cdot, x \rangle_{\mathcal{X}}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^* .

Since L_t is an element of \mathcal{X}^* , there exists an element k_t of \mathcal{X} such that $L_t = \langle \cdot, k_t \rangle_{\mathcal{X}}$. This allows us to define the <u>kernel</u> $k(t, t') = \langle k_t, k_{t'} \rangle_{\mathcal{X}}$.

It can be shown that k characterises \mathcal{X} . The relation $x(t) = \langle x, k(\cdot, t) \rangle_{\mathcal{X}}$ is called the reproducing property.

• • • • • • • • • • •

Riesz Representation Theorem

Let \mathcal{X}^* denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto \langle \cdot, x \rangle_{\mathcal{X}}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^* .

Since L_t is an element of \mathcal{X}^* , there exists an element k_t of \mathcal{X} such that $L_t = \langle \cdot, k_t \rangle_{\mathcal{X}}$. This allows us to define the <u>kernel</u> $k(t, t') = \langle k_t, k_{t'} \rangle_{\mathcal{X}}$.

It can be shown that k characterises \mathcal{X} . The relation $x(t) = \langle x, k(\cdot, t) \rangle_{\mathcal{X}}$ is called the reproducing property.

Riesz Representation Theorem

Let \mathcal{X}^* denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto \langle \cdot, x \rangle_{\mathcal{X}}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^* .

Since L_t is an element of \mathcal{X}^* , there exists an element k_t of \mathcal{X} such that $L_t = \langle \cdot, k_t \rangle_{\mathcal{X}}$. This allows us to define the <u>kernel</u> $k(t, t') = \langle k_t, k_{t'} \rangle_{\mathcal{X}}$.

It can be shown that k characterises \mathcal{X} . The relation $x(t) = \langle x, k(\cdot, t) \rangle_{\mathcal{X}}$ is called the reproducing property.

The native space of an RKHS is

$$\{x: D \to \mathbb{R} : \|x\|_{\mathcal{X}} < \infty\}.$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t,t)} \mathrm{d}
u(t) < \infty$, then

$$k(t,t') = \sum_{i=1}^\infty \lambda_i \psi_i(t) \psi_i(t').$$

Then the native space of the RKHS associated to k is:

$$\left\{x = \sum_{i=1}^{\infty} c_i \lambda_i^{rac{1}{2}} \psi_i \; : \; \|x\|_{\mathcal{X}}^2 = \sum_{i=1}^{\infty} c_i^2 < \infty
ight\}$$

The native space of an RKHS is

$$\{x: D \to \mathbb{R} : \|x\|_{\mathcal{X}} < \infty\}.$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t,t)} \mathrm{d}
u(t) < \infty$, then

$$k(t,t') = \sum_{i=1}^\infty \lambda_i \psi_i(t) \psi_i(t').$$

Then the native space of the RKHS associated to k is:

$$\left\{x = \sum_{i=1}^{\infty} c_i \lambda_i^{rac{1}{2}} \psi_i \; : \; \|x\|_{\mathcal{X}}^2 = \sum_{i=1}^{\infty} c_i^2 < \infty
ight\}$$

The native space of an RKHS is

$$\{x: D \to \mathbb{R} : \|x\|_{\mathcal{X}} < \infty\}.$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t,t)} \mathrm{d}
u(t) < \infty$, then

$$k(t,t') = \sum_{i=1}^{\infty} \lambda_i \psi_i(t) \psi_i(t').$$

Then the native space of the RKHS associated to k is:

$$\left\{ x = \sum_{i=1}^{\infty} c_i \lambda_i^{\frac{1}{2}} \psi_i \; : \; \|x\|_{\mathcal{X}}^2 = \sum_{i=1}^{\infty} c_i^2 < \infty \right\}$$

Image: A mathematical states and a mathem

Examples of native spaces (notation: $z_{+}^{k} := (\max(0, z))^{k}$):

Kernel $k(t, t')$	Native Space
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-rac{d}{2}}(D)$
$(1 - \ t - t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$
$(1-\ t-t'\)^4_+(4\ t-t'\ +1)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$

Here

$$H^m(D) = \left\{ x: D \to \mathbb{R} \quad \text{s.t.} \quad \|x\|_{H^m(D)}^2 = \sum_{|\alpha| \le m} \|D^\alpha x\|_{L^2(D)}^2 < \infty \right\}$$

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m > \frac{d}{2}$.

Notation:
$$|\alpha| = \alpha_1 + \dots + \alpha_d$$
, $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_m^{\alpha_m}}$, $||x||_{L^2(D)}^2 := \int x(t)^2 dt$.

Examples of native spaces (notation: $z_{+}^{k} := (\max(0, z))^{k}$):

Kernel $k(t, t')$	Native Space
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-rac{d}{2}}(D)$
$(1-\ t-t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$
$(1 - \ t - t'\)^4_+ (4\ t - t'\ + 1)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$

Here

$$H^m(D) = \left\{ x: D \to \mathbb{R} \quad \text{s.t.} \quad \|x\|^2_{H^m(D)} = \sum_{|\alpha| \le m} \|D^\alpha x\|^2_{L^2(D)} < \infty \right\}$$

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m > \frac{d}{2}$.

Notation: $|\alpha| = \alpha_1 + \dots + \alpha_d$, $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_m^{\alpha_m}}$, $||\mathbf{x}||_{L^2(D)}^2 := \int \mathbf{x}(t)^2 dt$.

Examples of native spaces (notation: $z_{+}^{k} := (\max(0, z))^{k}$):

Kernel $k(t, t')$	Native Space
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-rac{d}{2}}(D)$
$(1 - \ t - t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$
$(1-\ t-t'\)^4_+(4\ t-t'\ +1)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$

Here

$$H^m(D) = \left\{ x: D \to \mathbb{R} \quad \text{s.t.} \quad \|x\|^2_{H^m(D)} = \sum_{|\alpha| \le m} \|D^\alpha x\|^2_{L^2(D)} < \infty \right\}$$

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m > \frac{d}{2}$.

Notation:
$$|\alpha| = \alpha_1 + \dots + \alpha_d$$
, $D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_m^{\alpha_m}}$, $||x||_{L^2(D)}^2 := \int x(t)^2 dt$.

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$\begin{array}{rcl} x(t_1) & = & c_1 \\ & \vdots \\ x(t_n) & = & c_n. \end{array}$$

This is clearly ill-posed if dim $(\mathcal{X}) > n$.

Consider instead the regularised problem:

$$\hat{x}$$
 := $\underset{x \in \mathcal{X}}{\operatorname{arg inf}} \|x\|_{\mathcal{X}}$ s.t.
 \vdots $x(t_n) = c_n$

What is the relevance of the *interpolant* \hat{x} ? It is the posterior mean under the Gaussian process prior $P_x = \mathcal{GP}(0, k)$ combined with the data $\{(t_i, x(t_i))\}_{i=1}^n$.

• • • • • • • • • • • • •

$$\begin{array}{rcl} x(t_1) & = & c_1 \\ & \vdots \\ x(t_n) & = & c_n. \end{array}$$

This is clearly ill-posed if $\dim(\mathcal{X}) > n$.

Consider instead the regularised problem:

$$\hat{x}$$
 := $\underset{x \in \mathcal{X}}{\operatorname{arg inf}} \|x\|_{\mathcal{X}}$ s.t.
 \vdots $x(t_n) = c_n$

What is the relevance of the *interpolant* \hat{x} ? It is the posterior mean under the Gaussian process prior $P_x = \mathcal{GP}(0, k)$ combined with the data $\{(t_i, x(t_i))\}_{i=1}^n$.

• • • • • • • • • • • •

$$\begin{array}{rcl} x(t_1) & = & c_1 \\ & \vdots \\ x(t_n) & = & c_n. \end{array}$$

This is clearly ill-posed if $\dim(\mathcal{X}) > n$.

Consider instead the regularised problem:

$$\hat{x} := \underset{x \in \mathcal{X}}{\operatorname{arg inf}} \|x\|_{\mathcal{X}} \quad \text{s.t.} \quad \begin{array}{c} x(t_1) = c_1 \\ \vdots \\ x(t_n) = c_n \end{array}$$

What is the relevance of the *interpolant* \hat{x} ? It is the posterior mean under the Gaussian process prior $P_x = \mathcal{GP}(0, k)$ combined with the data $\{(t_i, x(t_i))\}_{i=1}^n$.

< □ > < 同 > < 回 > < Ξ > < Ξ

$$\begin{array}{rcl} x(t_1) & = & c_1 \\ & \vdots \\ x(t_n) & = & c_n. \end{array}$$

This is clearly ill-posed if $\dim(\mathcal{X}) > n$.

Consider instead the regularised problem:

$$\hat{x} := \underset{x \in \mathcal{X}}{\operatorname{arg inf}} \|x\|_{\mathcal{X}} \quad \text{s.t.} \quad \begin{array}{c} x(t_1) = c_1 \\ \vdots \\ x(t_n) = c_n \end{array}$$

What is the relevance of the *interpolant* \hat{x} ? It is the posterior mean under the Gaussian process prior $P_x = \mathcal{GP}(0, k)$ combined with the data $\{(t_i, x(t_i))\}_{i=1}^n$.

イロト イポト イヨト イヨ

$$\begin{array}{rcl} x(t_1) & = & c_1 \\ & \vdots \\ x(t_n) & = & c_n. \end{array}$$

This is clearly ill-posed if $\dim(\mathcal{X}) > n$.

Consider instead the regularised problem:

$$\hat{x} := \underset{x \in \mathcal{X}}{\operatorname{arg inf}} \|x\|_{\mathcal{X}} \quad \text{s.t.} \quad \begin{array}{c} x(t_1) = c_1 \\ \vdots \\ x(t_n) = c_n \end{array}$$

What is the relevance of the *interpolant* \hat{x} ? It is the posterior mean under the Gaussian process prior $P_x = \mathcal{GP}(0, k)$ combined with the data $\{(t_i, x(t_i))\}_{i=1}^n$.

イロト イヨト イヨト イヨ

In general $|\hat{x}(t) - x(t)| \le p_{\mathcal{X}}(t_1, \ldots, t_n) ||x||_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X} . Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

$$\mathsf{K} = \left[\begin{array}{ccc} k(t_1, t_1) & \dots & k(t_1, t_n) \\ \vdots & & \vdots \\ k(t_n, t_1) & \dots & k(t_n, t_n) \end{array} \right]$$

If K^{-1} exists then, from linear algebra, there exist functions such that

$$\varphi_i(t_j) = \delta_{ij}, \quad \varphi_i \in \operatorname{span}\{k(\cdot, t_j), \ j = 1, \dots, n\}.$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x} = \sum_{i=1}^{n} c_i \varphi_i = \sum_{i=1}^{n} x(t_i) \varphi_i$.

In general $|\hat{x}(t) - x(t)| \le p_{\mathcal{X}}(t_1, \ldots, t_n) ||x||_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X} . Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

$$\boldsymbol{\mathcal{K}} = \left[\begin{array}{ccc} k(t_1, t_1) & \dots & k(t_1, t_n) \\ \vdots & & \vdots \\ k(t_n, t_1) & \dots & k(t_n, t_n) \end{array} \right]$$

If K^{-1} exists then, from linear algebra, there exist functions such that

$$\varphi_i(t_j) = \delta_{ij}, \quad \varphi_i \in \operatorname{span}\{k(\cdot, t_j), \ j = 1, \dots, n\}.$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x} = \sum_{i=1}^{n} c_i \varphi_i = \sum_{i=1}^{n} x(t_i) \varphi_i$.

< ロ > < 同 > < 三 > < 三

In general $|\hat{x}(t) - x(t)| \le p_{\mathcal{X}}(t_1, \ldots, t_n) ||x||_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X} . Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

$$\boldsymbol{\mathcal{K}} = \left[\begin{array}{ccc} k(t_1, t_1) & \dots & k(t_1, t_n) \\ \vdots & & \vdots \\ k(t_n, t_1) & \dots & k(t_n, t_n) \end{array} \right]$$

If K^{-1} exists then, from linear algebra, there exist functions such that

$$\varphi_i(t_j) = \delta_{ij}, \quad \varphi_i \in \operatorname{span}\{k(\cdot, t_j), \ j = 1, \dots, n\}.$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x} = \sum_{i=1}^{n} c_i \varphi_i = \sum_{i=1}^{n} x(t_i) \varphi_i$.

• • • • • • • • • • • • •

$$\begin{aligned} |\mathbf{x}(t) - \hat{\mathbf{x}}(t)| &= \left| \mathbf{x}(t) - \sum_{i=1}^{n} \mathbf{x}(t_{i})\varphi_{i}(t) \right| \\ &= \left| \left\langle \mathbf{x}, \mathbf{k}(\cdot, t) - \sum_{i=1}^{n} \varphi_{i}(t)\mathbf{k}(\cdot, t_{i}) \right\rangle_{\mathcal{X}} \right| \quad (\text{reproducing property}) \\ &\leq \left\| \mathbf{x} \right\|_{\mathcal{X}} \underbrace{\left\| \mathbf{k}(\cdot, t) - \sum_{i=1}^{n} \varphi_{i}(t)\mathbf{k}(\cdot, t_{i}) \right\|_{\mathcal{X}}}_{\mathcal{P}_{\mathcal{X}}(t_{1}, \dots, t_{n})} \quad (\text{Cauchy-Schwarz}) \end{aligned}$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

$$p_{\mathcal{X}}(t_1,\ldots,t_n) = \left\| k(\cdot,t) - \sum_{i=1}^n \varphi_i(t) k(\cdot,t_i) \right\|_{\mathcal{X}}.$$

イロト イロト イヨト イ

$$\begin{aligned} |x(t) - \hat{x}(t)| &= \left| x(t) - \sum_{i=1}^{n} x(t_i) \varphi_i(t) \right| \\ &= \left| \left\langle x, k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\rangle_{\mathcal{X}} \right| \quad (\text{reproducing property}) \\ &\leq ||x||_{\mathcal{X}} \underbrace{\left\| k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\|_{\mathcal{X}}}_{p_{\mathcal{X}}(t_1, \dots, t_n)} \quad (\text{Cauchy-Schwarz}) \end{aligned}$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

$$p_{\mathcal{X}}(t_1,\ldots,t_n) = \left\| k(\cdot,t) - \sum_{i=1}^n \varphi_i(t) k(\cdot,t_i) \right\|_{\mathcal{X}}.$$

・ロト ・回ト ・ヨト ・

$$\begin{aligned} |x(t) - \hat{x}(t)| &= \left| x(t) - \sum_{i=1}^{n} x(t_i) \varphi_i(t) \right| \\ &= \left| \left\langle x, k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\rangle_{\mathcal{X}} \right| \quad (\text{reproducing property}) \\ &\leq \left\| x \right\|_{\mathcal{X}} \underbrace{\left\| k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\|_{\mathcal{X}}}_{p_{\mathcal{X}}(t_1, \dots, t_n)} \quad (\text{Cauchy-Schwarz}) \end{aligned}$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

$$p_{\mathcal{X}}(t_1,\ldots,t_n) = \left\| k(\cdot,t) - \sum_{i=1}^n \varphi_i(t) k(\cdot,t_i) \right\|_{\mathcal{X}}.$$

・ロト ・回ト ・ヨト ・

$$\begin{aligned} |x(t) - \hat{x}(t)| &= \left| x(t) - \sum_{i=1}^{n} x(t_i) \varphi_i(t) \right| \\ &= \left| \left\langle x, k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\rangle_{\mathcal{X}} \right| \quad (\text{reproducing property}) \\ &\leq \left\| x \right\|_{\mathcal{X}} \underbrace{ \left\| k(\cdot, t) - \sum_{i=1}^{n} \varphi_i(t) k(\cdot, t_i) \right\|_{\mathcal{X}}}_{p_{\mathcal{X}}(t_1, \dots, t_n)} \quad (\text{Cauchy-Schwarz}) \end{aligned}$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

$$p_{\mathcal{X}}(t_1,\ldots,t_n) = \left\| k(\cdot,t) - \sum_{i=1}^n \varphi_i(t) k(\cdot,t_i) \right\|_{\mathcal{X}}.$$

A D > A B > A B > A

Equip $D \subset \mathbb{R}^d$ with the Euclidean norm $\|\cdot\|$.

Let $h = \sup_{t \in D} \min_{i=1,...,n} ||t - t_i||$ denote the <u>fill distance</u> of the points t_1, \ldots, t_n in D.

Then bounds of the form $p_{\mathcal{X}}(t_1, \ldots, t_n) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

Kernel $k(t, t')$	Native Space	F(h)
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$	$\exp(-c \log(h) /h)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-rac{d}{2}}(D)$	$\exp(-c/h)$
$(1 - \ t - t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$	$h^{\frac{1}{2}}$
$(1 - \ t - t'\)^4_+ (4\ t - t'\ + 1)$	$H^{rac{d}{2}+rac{3}{2}}(D)$	$h^{\frac{3}{2}}$

... and that's enough theoretical background

Equip $D \subset \mathbb{R}^d$ with the Euclidean norm $\|\cdot\|$.

Let $h = \sup_{t \in D} \min_{i=1,...,n} ||t - t_i||$ denote the <u>fill distance</u> of the points $t_1, ..., t_n$ in D.

Then bounds of the form $p_{\mathcal{X}}(t_1, \ldots, t_n) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

Kernel $k(t, t')$	Native Space	F(h)
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$	$\exp(-c \log(h) /h)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-\frac{d}{2}}(D)$	$\exp(-c/h)$
$(1 - \ t - t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$	$h^{\frac{1}{2}}$
$(1 - \ t - t'\)^4_+ (4\ t - t'\ + 1)$	$H^{rac{d}{2}+rac{3}{2}}(D)$	$h^{\frac{3}{2}}$

... and that's enough theoretical background

Equip $D \subset \mathbb{R}^d$ with the Euclidean norm $\|\cdot\|$.

Let $h = \sup_{t \in D} \min_{i=1,...,n} ||t - t_i||$ denote the <u>fill distance</u> of the points $t_1, ..., t_n$ in D.

Then bounds of the form $p_{\mathcal{X}}(t_1, \ldots, t_n) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

Kernel $k(t, t')$	Native Space	F(h)
$\exp(-\ t-t'\ ^2)$	$\cap_{m\in\mathbb{N}}H^m(D)$	$\exp(-c \log(h) /h)$
$(c^2+\ t-t'\ ^2)^{-eta}$, $eta>rac{d}{2}$	$H^{\beta-rac{d}{2}}(D)$	$\exp(-c/h)$
$(1 - \ t - t'\)_+^2$	$H^{rac{d}{2}+rac{1}{2}}(D)$	$h^{\frac{1}{2}}$
$(1 - \ t - t'\)^4_+ (4\ t - t'\ + 1)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$	$h^{\frac{3}{2}}$

... and that's enough theoretical background!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Seventh Job: Solution of Integrals, in Detail

A B + A
 B + A
 B
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Consider estimation of the Quantity of Interest

$$Q(x) = \int x(t) \mathrm{d}\nu(t)$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^d$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

$$A(x) = \begin{bmatrix} x(t_1) \\ \vdots \\ x(t_n) \end{bmatrix}.$$

I.e. we must select points $\{t_i\}_{i=1}^n$ at which to evaluate the integrand. But how?

・ロト ・回ト ・ヨト ・
Consider estimation of the Quantity of Interest

$$Q(x) = \int x(t) \mathrm{d}\nu(t)$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^d$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

$$A(x) = \begin{bmatrix} x(t_1) \\ \vdots \\ x(t_n) \end{bmatrix}.$$

I.e. we must select points $\{t_i\}_{i=1}^n$ at which to evaluate the integrand. But how?

・ロト ・回ト ・ヨト ・ヨ

Consider estimation of the Quantity of Interest

$$Q(x) = \int x(t) \mathrm{d}
u(t)$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^d$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

$$A(x) = \begin{bmatrix} x(t_1) \\ \vdots \\ x(t_n) \end{bmatrix}.$$

I.e. we must select points $\{t_i\}_{i=1}^n$ at which to evaluate the integrand. But how?

・ロト ・回ト ・ヨト ・ヨ

Here we show worst case error $e_{WCE}(M)$ for the method M = (A, b) where $b(a) = \frac{1}{n} \sum_{i=1}^{n} a_i$. i.e. an un-weighted average of function evaluations at the points $\{t_i\}_{i=1}^n$.

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) \mathrm{d}\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose *D* is a bounded subset of \mathcal{X} . Then:

$$\begin{split} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^{2}(\nu)} \quad (\text{regression bound}) \\ &\leq \|\hat{x} - x\|_{\infty} \quad (\text{sup bound}) \\ &\leq p_{\mathcal{X}}(t_{1}, \dots, t_{n})\|x\|_{\mathcal{X}} \quad (\text{RKHS fill-distance bound}) \end{split}$$

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose *D* is a bounded subset of \mathcal{X} . Then:

$$\begin{aligned} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^2(\nu)} \quad (\text{regression bound}) \\ &\leq \|\hat{x} - x\|_{\infty} \quad (\text{sup bound}) \\ &\leq p_{\mathcal{X}}(t_1, \dots, t_n) \|x\|_{\mathcal{X}} \quad (\text{RKHS fill-distance bound}) \end{aligned}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X} . Then:

$$\begin{aligned} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^{2}(\nu)} \quad (\text{regression bound}) \\ &\leq \|\hat{x} - x\|_{\infty} \quad (\text{sup bound}) \\ &\leq p_{\mathcal{X}}(t_{1}, \dots, t_{n})\|x\|_{\mathcal{X}} \quad (\text{RKHS fill-distance bound}) \end{aligned}$$

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

イロト 不得下 イヨト イヨト

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose *D* is a bounded subset of \mathcal{X} . Then:

$$\begin{aligned} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^{2}(\nu)} \quad (\text{regression bound}) \\ &\leq \|\hat{x} - x\|_{\infty} \quad (\text{sup bound}) \\ &\leq p_{\mathcal{X}}(t_{1}, \dots, t_{n})\|x\|_{\mathcal{X}} \quad (\text{RKHS fill-distance bound}) \end{aligned}$$

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose *D* is a bounded subset of \mathcal{X} . Then:

$$\begin{aligned} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^2(\nu)} \quad \text{(regression bound)} \\ &\leq \|\hat{x} - x\|_{\infty} \quad \text{(sup bound)} \\ &\leq p_{\mathcal{X}}(t_1, \dots, t_n) \|x\|_{\mathcal{X}} \quad (\mathsf{RKHS fill-distance b}) \end{aligned}$$

The mean of the posterior $Q_{\#}P_{x|a}$ is denoted b(a). It satisfies

$$b(a) = \int \hat{x}(t) d\nu(t)$$

where \hat{x} is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean *b*, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose *D* is a bounded subset of \mathcal{X} . Then:

$$\begin{split} |b(A(x)) - Q(x)| &\leq \|\hat{x} - x\|_{L^2(\nu)} \quad (\text{regression bound}) \\ &\leq \|\hat{x} - x\|_{\infty} \quad (\text{sup bound}) \\ &\leq p_{\mathcal{X}}(t_1, \dots, t_n) \|x\|_{\mathcal{X}} \quad (\text{RKHS fill-distance bound}) \end{split}$$

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{\rm WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{\rm WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0, 1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{\rm WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{\rm WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Let $\mathcal{X} = H^1(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X} = [0,1]^d$, ν be uniform on D and let the points $\{t_i\}_{i=1}^n$ be quasi-uniform over D (i.e. $h = O(\frac{1}{n})$). Then $\exists C$ s.t. whenever $\alpha > \frac{d}{2}$:

$$e_{\rm WCE}(M) = O(n^{-1/d})$$

for all $\epsilon > 0$.

- Recall that \hat{b} is the trapezoidal rule so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^1(D)$.
- The method of proof can be extended to other domains/measures/point sets.

The variance of the posterior $Q_{\#}P_{x|a}$ is equal to $e_{WCE}(M)^2$ where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X} = H^1(D)$ example, with D = [0, 1] the kernel $k(t, t') = \min(t, t')$, we will prove later that optimal information (i.e. the points $\{t_i\}_{i=1}^n$ that minimise the posterior variance) are a uniform grid over [0, 1].

A D > A P > A B > A

The variance of the posterior $Q_{\#}P_{x|a}$ is equal to $e_{WCE}(M)^2$ where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X} = H^1(D)$ example, with D = [0, 1] the kernel $k(t, t') = \min(t, t')$, we will prove later that optimal information (i.e. the points $\{t_i\}_{i=1}^n$ that minimise the posterior variance) are a uniform grid over [0, 1].

A D > A P > A B > A

The variance of the posterior $Q_{\#}P_{x|a}$ is equal to $e_{WCE}(M)^2$ where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X} = H^1(D)$ example, with D = [0, 1] the kernel $k(t, t') = \min(t, t')$, we will prove later that optimal information (i.e. the points $\{t_i\}_{i=1}^n$ that minimise the posterior variance) are a uniform grid over [0, 1].

イロト 不得下 イヨト イヨト

The variance of the posterior $Q_{\#}P_{x|a}$ is equal to $e_{WCE}(M)^2$ where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X} = H^1(D)$ example, with D = [0, 1] the kernel $k(t, t') = \min(t, t')$, we will prove later that optimal information (i.e. the points $\{t_i\}_{i=1}^n$ that minimise the posterior variance) are a uniform grid over [0, 1].

イロト イヨト イヨト イヨト

The variance of the posterior $Q_{\#}P_{x|a}$ is equal to $e_{WCE}(M)^2$ where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X} = H^1(D)$ example, with D = [0, 1] the kernel $k(t, t') = \min(t, t')$, we will prove later that optimal information (i.e. the points $\{t_i\}_{i=1}^n$ that minimise the posterior variance) are a uniform grid over [0, 1].

Of course, we are not interested in just the mean of $Q_{\#}P_{\times|a}$ but the full distribution $Q_{\#}P_{\times|a}$ itself.

A basic question is "does this probability mass contract to the true value Q(x)?"

For Bayesian Quadrature, where P_x is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $||x||_{\mathcal{X}} < \infty$, then for all $\epsilon > 0$ there exists C_{ϵ} such that:

$$Q_{\#}P_{x|a}(I_{\text{true}} - \epsilon, I_{\text{true}} + \epsilon) = 1 - o\left(\exp(-C_{\epsilon}/e_{\text{WCE}}(M)^2)\right)$$

where I_{true} is the true value of the integral and M = (A, B), $B = Q_{\#}P_{x|a}$

• • • • • • • • • • •

Of course, we are not interested in just the mean of $Q_{\#}P_{\times|a}$ but the full distribution $Q_{\#}P_{\times|a}$ itself.

A basic question is "does this probability mass contract to the true value Q(x)?"

For Bayesian Quadrature, where P_x is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $||x||_{\mathcal{X}} < \infty$, then for all $\epsilon > 0$ there exists C_{ϵ} such that:

$$Q_{\#}P_{x|s}(I_{\text{true}} - \epsilon, I_{\text{true}} + \epsilon) = 1 - o\left(\exp(-C_{\epsilon}/e_{\text{WCE}}(M)^2)\right)$$

where I_{true} is the true value of the integral and M = (A, B), $B = Q_{\#}P_{x|a}$

Image: A math a math

Of course, we are not interested in just the mean of $Q_{\#}P_{\times|a}$ but the full distribution $Q_{\#}P_{\times|a}$ itself.

A basic question is "does this probability mass contract to the true value Q(x)?"

For Bayesian Quadrature, where P_x is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $||x||_{\mathcal{X}} < \infty$, then for all $\epsilon > 0$ there exists C_{ϵ} such that:

$$egin{aligned} Q_{\#} \mathcal{P}_{\mathsf{x}|\mathsf{a}}(\mathit{I}_{\mathsf{true}} - \epsilon, \mathit{I}_{\mathsf{true}} + \epsilon) &= 1 - oig(\exp(-\mathit{C}_{\epsilon} / \mathit{e}_{\mathsf{WCE}}(\mathit{M})^2) ig) \end{aligned}$$

where I_{true} is the true value of the integral and M = (A, B), $B = Q_{\#}P_{x|a}$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Calibration

æ

メロト メロト メヨト メヨト

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS.

3

・ロト ・回ト ・ヨト ・ヨト

$$k_lpha(t,t';\sigma,\lambda) \; := \; \lambda^2 \prod_{i=1}^d rac{2^{1-lpha}}{\Gamma(lpha)} \left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)^lpha \, \mathcal{K}_lpha\left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)$$

we need to specify hyper-parameters (λ, σ).

These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider *empirical Bayes*, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$\operatorname{argmax}_{\sigma,\lambda} pig(\{x(t_i)\}_{i=1}^n \big| \sigma, \lambda, \{t_i\}_{i=1}^nig)$$

Theoretically difficult to estimate lpha - see counterexamples in Szabó et al. [2015].

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$k_lpha(t,t';\sigma,\lambda) \; := \; \lambda^2 \prod_{i=1}^d rac{2^{1-lpha}}{\Gamma(lpha)} \left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)^lpha \, \mathcal{K}_lpha\left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)$$

we need to specify hyper-parameters (λ, σ) .

These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider *empirical Bayes*, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$\operatorname{argmax}_{\sigma,\lambda} p(\{x(t_i)\}_{i=1}^n | \sigma, \lambda, \{t_i\}_{i=1}^n)$$

Theoretically difficult to estimate lpha - see counterexamples in Szabó et al. [2015].

$$k_lpha(t,t';\sigma,\lambda) \; := \; \lambda^2 \prod_{i=1}^d rac{2^{1-lpha}}{\Gamma(lpha)} \left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)^lpha \, \mathcal{K}_lpha\left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)$$

we need to specify hyper-parameters (λ, σ) .

These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider *empirical Bayes*, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$\operatorname{argmax}_{\sigma,\lambda} p(\{x(t_i)\}_{i=1}^n | \sigma, \lambda, \{t_i\}_{i=1}^n)$$

Theoretically difficult to estimate lpha - see counterexamples in Szabó et al. [2015].

キロマ 予定 マイリット

$$k_lpha(t,t';\sigma,\lambda) \; := \; \lambda^2 \prod_{i=1}^d rac{2^{1-lpha}}{\Gamma(lpha)} \left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)^lpha \, \mathcal{K}_lpha\left(rac{\sqrt{2lpha}|t_i-t_i'|}{\sigma}
ight)$$

we need to specify hyper-parameters (λ, σ) .

These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider *empirical Bayes*, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$\operatorname{argmax}_{\sigma,\lambda} p(\{x(t_i)\}_{i=1}^n | \sigma, \lambda, \{t_i\}_{i=1}^n)$$

Theoretically difficult to estimate α - see counterexamples in Szabó et al. [2015].

Calibration on Test Functions

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Calibration on Test functions

- Empirical Bayes can be over-confident when *n* is small.
- Alternative option would be marginalisation but requires that a hyper-prior be specified.

In Part III it has been argued that:

- For Gaussian priors P_x , the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#}P_{x|a}$ reduced to analysis of the posterior mean b(a) and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

In Part III it has been argued that:

- For Gaussian priors P_x , the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#}P_{x|a}$ reduced to analysis of the posterior mean b(a) and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

In Part III it has been argued that:

- For Gaussian priors P_x , the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#}P_{x|a}$ reduced to analysis of the posterior mean b(a) and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III
In Part III it has been argued that:

- For Gaussian priors P_x , the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#}P_{\times|a}$ reduced to analysis of the posterior mean b(a) and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

Image: A match a ma

In Part III it has been argued that:

- For Gaussian priors P_x , the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#}P_{\times|a}$ reduced to analysis of the posterior mean b(a) and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

Image: A match a ma