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History of Probabilistic Numerical Methods

Average Case ε-Complexity in Computer Science: A
Bayesian View

J. B. KADANE, Carnegie-Mellon University; G. W.
WASILKOWSKI, Columbia University/

In Bayesian Statistics 2, Proceedings of the Second Valencia
International Meeting (pp. 361–374), 1985.

Relations between average case ε-complexity and
Bayesian Statistics are discussed. An algorithm
corresponds to a decision function and the choice
of information to the choice of an experiment. [...]
We hope that the relation reported here can lead
to further fruitful results for both fields.
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Recap: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.
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Sixth Job: Analysis of the Gaussian Case
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Gaussian process
↓

covariance function k ↔ kernel function k
↑

Reproducing kernel
Hilbert space
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Reproducing Kernel Hilbert Spaces

Let X be a Hilbert space (i.e. a complete inner product space) of real-valued functions
on D. Let Lt : x 7→ x(t) denote the evaluation functional at a point t ∈ D. Then X is a
reproducing kernel Hilbert space (RKHS) if there exists C such that

|Ltx | ≤ C‖x‖X

for all x ∈ X .
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Reproducing Kernel Hilbert Spaces

Riesz Representation Theorem

Let X ∗ denote the dual of X (i.e. the space of continuous linear functionals on X ).
Then x 7→ 〈·, x〉X is an isometric isomorphism from X to X ∗.

Since Lt is an element of X ∗, there exists an element kt of X such that Lt = 〈·, kt〉X .
This allows us to define the kernel k(t, t′) = 〈kt , kt′〉X .

It can be shown that k characterises X . The relation x(t) = 〈x , k(·, t)〉X is called the
reproducing property.
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Reproducing Kernel Hilbert Spaces

The native space of an RKHS is

{x : D → R : ‖x‖X <∞}.

How is the native space related to the kernel?

Recall, from Mercer’s theorem if
∫ √

k(t, t)dν(t) <∞, then

k(t, t′) =
∞∑
i=1

λiψi (t)ψi (t
′).

Then the native space of the RKHS associated to k is:{
x =

∞∑
i=1

ciλ
1
2
i ψi : ‖x‖2

X =
∞∑
i=1

c2
i <∞

}
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Approximation in RKHS

Examples of native spaces (notation: zk+ := (max(0, z))k):

Kernel k(t, t′) Native Space

exp(−‖t − t′‖2) ∩m∈NH
m(D)

(c2 + ‖t − t′‖2)−β , β > d
2

Hβ−
d
2 (D)

(1− ‖t − t′‖)2
+ H

d
2

+ 1
2 (D)

(1− ‖t − t′‖)4
+(4‖t − t′‖+ 1) H

d
2

+ 3
2 (D)

Here

Hm(D) =

x : D → R s.t. ‖x‖2
Hm(D) =

∑
|α|≤m

‖Dαx‖2
L2(D) <∞


is the Sobolev space of order m ∈ N. It is well-defined for m > d

2
.

Notation: |α| = α1 + · · ·+ αd , Dα = ∂|α|

∂x
α1
1 ...∂x

αm
m

, ‖x‖2
L2(D) :=

∫
x(t)2dt.
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Approximation in RKHS

Consider the task of estimation of x ∈ X based on the information that

x(t1) = c1

...

x(tn) = cn.

This is clearly ill-posed if dim(X ) > n.

Consider instead the regularised problem:

x̂ := arg inf
x∈X

‖x‖X s.t.

x(t1) = c1

...
x(tn) = cn

.

What is the relevance of the interpolant x̂? It is the posterior mean under the Gaussian
process prior Px = GP(0, k) combined with the data {(ti , x(ti ))}ni=1.
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Approximation in RKHS

In general |x̂(t)− x(t)| ≤ pX (t1, . . . , tn)‖x‖X where pX is the power function associated
to X . Our aim now is to understand more about pX .

Consider the kernel matrix

K =

 k(t1, t1) . . . k(t1, tn)
...

...
k(tn, t1) . . . k(tn, tn)

 .
If K−1 exists then, from linear algebra, there exist functions such that

ϕi (tj) = δij , ϕi ∈ span{k(·, tj), j = 1, . . . , n}.

Representer Theorem

The regularised estimate x̂ is given by x̂ =
∑n

i=1 ciϕi =
∑n

i=1 x(ti )ϕi .
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Approximation in RKHS

Derivation of the power function:

|x(t)− x̂(t)| =

∣∣∣∣∣x(t)−
n∑

i=1

x(ti )ϕi (t)

∣∣∣∣∣
=

∣∣∣∣∣
〈
x , k(·, t)−

n∑
i=1

ϕi (t)k(·, ti )

〉
X

∣∣∣∣∣ (reproducing property)

≤ ‖x‖X

∥∥∥∥∥k(·, t)−
n∑

i=1

ϕi (t)k(·, ti )

∥∥∥∥∥
X︸ ︷︷ ︸

pX (t1,...,tn)

(Cauchy-Schwarz)

To study x̂ (the posterior mean in a Gaussian process regression) we need to consider the
mathematical properties of

pX (t1, . . . , tn) =

∥∥∥∥∥k(·, t)−
n∑

i=1

ϕi (t)k(·, ti )

∥∥∥∥∥
X

.
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Approximation in RKHS

Equip D ⊂ Rd with the Euclidean norm ‖ · ‖.

Let h = supt∈D mini=1,...,n ‖t − ti‖ denote the fill distance of the points t1, . . . , tn in D.

Then bounds of the form pX (t1, . . . , tn) ≤ F (h) can be obtained (e.g. see Sec. 11.3 of
Wendland [2004]):

Kernel k(t, t′) Native Space F (h)

exp(−‖t − t′‖2) ∩m∈NH
m(D) exp(−c| log(h)|/h)

(c2 + ‖t − t′‖2)−β , β > d
2

Hβ−
d
2 (D) exp(−c/h)

(1− ‖t − t′‖)2
+ H

d
2

+ 1
2 (D) h

1
2

(1− ‖t − t′‖)4
+(4‖t − t′‖+ 1) H

d
2

+ 3
2 (D) h

3
2

... and that’s enough theoretical background!
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Seventh Job: Solution of Integrals, in Detail
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Solution of Integrals

Consider estimation of the Quantity of Interest

Q(x) =

∫
x(t)dν(t)

where x is an integrand of interest and ν is a measure on D ⊆ Rd .

In the Bayesian approach to Probabilistic Numerics, we must select an information
operator

A(x) =

 x(t1)
...

x(tn)

 .

I.e. we must select points {ti}ni=1 at which to evaluate the integrand. But how?
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I.e. we must select points {ti}ni=1 at which to evaluate the integrand. But how?
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Monte Carlo & Quasi-Monte Carlo Points

Monte Carlo Sobol Sequence Higher-Order Digital Net

F = L2(D) H1(D) Hβmix := Hβ1 (D)× · × Hβ1 (D)

eWCE(M) = OP(n−1/2) O(n−1) O(n−β)

Here we show worst case error eWCE(M) for the method M = (A, b) where b(a) = 1
n

∑n
i=1 ai . i.e.

an un-weighted average of function evaluations at the points {ti}ni=1.
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Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian
prior Px : x ∼ GP(0, k).

The mean of the posterior Q#Px|a is denoted b(a). It satisfies

b(a) =

∫
x̂(t)dν(t)

where x̂ is the RKHS interpolant based on the information A(x) = a.

The performance of the posterior mean b, viewed as a classical numerical method, can be
studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of X . Then:

|b(A(x))− Q(x)| ≤ ‖x̂ − x‖L2(ν) (regression bound)

≤ ‖x̂ − x‖∞ (sup bound)

≤ pX (t1, . . . , tn)‖x‖X (RKHS fill-distance bound)
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Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power
function pX (t1, . . . , tn) depends on the choice of the points {ti}ni=1.

Let X = H1(D) be the standard Sobolev space, with an appropriate choice of kernel k.
Let X = [0, 1]d , ν be uniform on D and let the points {ti}ni=1 be quasi-uniform over D
(i.e. h = O( 1

n
)). Then ∃C s.t. whenever α > d

2
:

eWCE(M) = O(n−1/d)

for all ε > 0.

Recall that b̂ is the trapezoidal rule - so this matches known results.

Optimal rate for the WCE of a deterministic method for integration of functions in
the space H1(D).

The method of proof can be extended to other domains/measures/point sets.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 81 / 183



Bayesian Quadrature

The mean b(a) of the posterior Q#Px|a can be considered as a classical numerical
method and we can ask about optimal information for b, either in the sense of worst-case
or average-case optimal. But why would this be relevant?

The variance of the posterior Q#Px|a is equal to eWCE(M)2 where M = (A, b).

(This is a special case of the fact from Bayesian decision theory that (for equaliser rules)
minimax ↔ Bayes.)

For the X = H1(D) example, with D = [0, 1] the kernel k(t, t′) = min(t, t′), we will
prove later that optimal information (i.e. the points {ti}ni=1 that minimise the posterior
variance) are a uniform grid over [0, 1].
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Posterior Contraction

Of course, we are not interested in just the mean of Q#Px|a but the full distribution
Q#Px|a itself.

A basic question is “does this probability mass contract to the true value Q(x)?”

true integral

P
os

te
rio

r 
di

st
rib

ut
io

n

For Bayesian Quadrature, where Px is Gaussian, this can be answered through the
properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies ‖x‖X <∞, then for all ε > 0
there exists Cε such that:

Q#Px|a(Itrue − ε, Itrue + ε) = 1− o
(

exp(−Cε/eWCE(M)2)
)

where Itrue is the true value of the integral and M = (A,B), B = Q#Px|a.
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Calibration
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Calibration of Bayesian Quadrature

Given a specific kernel, e.g. Matérn kernel below:

kα(t, t′;σ, λ) := λ2
d∏

i=1

21−α

Γ(α)

(√
2α|ti − t′i |

σ

)α
Kα

(√
2α|ti − t′i |

σ

)
we need to specify hyper-parameters (λ, σ).

These hyper-parameters can greatly influence the posterior mean and variance. From a
Bayesian perspective, these need to be set adequately to obtain good quantification of
uncertainty.

In this Part, we consider empirical Bayes, which entails maximising the marginal
likelihood of the data over the hyper-parameters:

argmaxσ,λ p
(
{x(ti )}ni=1

∣∣σ, λ, {ti}ni=1

)

Theoretically difficult to estimate α - see counterexamples in Szabó et al. [2015].
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Calibration on Test Functions
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Calibration on Test functions

Empirical Bayes can be over-confident when n is small.

Alternative option would be marginalisation - but requires that a hyper-prior be
specified.
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Conclusion

In Part III it has been argued that:

For Gaussian priors Px , the theory of approximation in RKHS is important.

For Bayesian Quadrature, the analysis of the full posterior Q#Px|a reduced to
analysis of the posterior mean b(a) and was classical.

Calibration of uncertainty remains an important open problem.

END OF PART III
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