Part III

History of Probabilistic Numerical Methods

Average Case ϵ-Complexity in Computer Science: A Bayesian View
J. B. KADANE, Carnegie-Mellon University; G. W. WASILKOWSKI, Columbia University/

In Bayesian Statistics 2, Proceedings of the Second Valencia International Meeting (pp. 361-374), 1985.

Relations between average case ϵ-complexity and Bayesian Statistics are discussed. An algorithm corresponds to a decision function and the choice of information to the choice of an experiment. [...] We hope that the relation reported here can lead to further fruitful results for both fields.

History of Probabilistic Numerical Methods

Average Case ϵ-Complexity in Computer Science: A Bayesian View
J. B. KADANE, Carnegie-Mellon University; G. W. WASILKOWSKI, Columbia University/

In Bayesian Statistics 2, Proceedings of the Second Valencia International Meeting (pp. 361-374), 1985.

Relations between average case ϵ-complexity and Bayesian Statistics are discussed. An algorithm corresponds to a decision function and the choice of information to the choice of an experiment. [...] We hope that the relation reported here can lead to further fruitful results for both fields.

Recap: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Recap: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Recap: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Recap: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

- a prior measure P_{x} is placed on \mathcal{X}
- a posterior measure $P_{x \mid a}$ is defined as the "restriction of P_{x} to those functions $x \in \mathcal{X}$ for which

$$
A(x)=a \quad \text { e.g. } \quad A(x)=\left[\begin{array}{c}
-\Delta x\left(t_{1}\right) \\
\vdots \\
-\Delta x\left(t_{n}\right)
\end{array}\right]=a
$$

is satisfied" (to be formalised).
\Longrightarrow Principled and general uncertainty quantification for numerical methods.

Sixth Job: Analysis of the Gaussian Case

Reproducing Kernel Hilbert Spaces

Let \mathcal{X} be a Hilbert space (i.e. a complete inner product space) of real-valued functions on D. Let $L_{t}: x \mapsto x(t)$ denote the evaluation functional at a point $t \in D$. Then \mathcal{X} is a reproducing kernel Hilbert space (RKHS) if there exists C such that

$$
\left|L_{t} x\right| \leq C\|x\| \mathcal{X}
$$

for all $x \in \mathcal{X}$.

Reproducing Kernel Hilbert Spaces

Riesz Representation Theorem

Let \mathcal{X}^{*} denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto\langle\cdot, x\rangle_{\mathcal{X}}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^{*}.

Since L_{t} is an element of \mathcal{X}^{*}, there exists an element k_{t} of \mathcal{X} such that $L_{t}=\left\langle\cdot, k_{t}\right\rangle_{\chi}$

 This allows us to define the kernel $k\left(t, t^{\prime}\right)=\left\langle k_{t}, k_{t^{\prime}}\right\rangle_{\mathcal{X}}$It can be shown that k characterises \mathcal{X}. The relation $x(t)=\langle x, k(\cdot, t)\rangle_{\mathcal{X}}$ is called the reproducing property

Reproducing Kernel Hilbert Spaces

Riesz Representation Theorem

Let \mathcal{X}^{*} denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto\langle\cdot, x\rangle \mathcal{X}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^{*}.

Since L_{t} is an element of \mathcal{X}^{*}, there exists an element k_{t} of \mathcal{X} such that $L_{t}=\left\langle\cdot, k_{t}\right\rangle_{\mathcal{X}}$. This allows us to define the kernel $k\left(t, t^{\prime}\right)=\left\langle k_{t}, k_{t^{\prime}}\right\rangle_{\mathcal{X}}$.

It can be shown that k characterises \mathcal{X}. The relation $x(t)=\langle x, k(\cdot, t)\rangle_{\mathcal{X}}$ is called the reproducing property.

Reproducing Kernel Hilbert Spaces

Riesz Representation Theorem

Let \mathcal{X}^{*} denote the dual of \mathcal{X} (i.e. the space of continuous linear functionals on \mathcal{X}). Then $x \mapsto\langle\cdot, x\rangle_{\mathcal{X}}$ is an isometric isomorphism from \mathcal{X} to \mathcal{X}^{*}.

Since L_{t} is an element of \mathcal{X}^{*}, there exists an element k_{t} of \mathcal{X} such that $L_{t}=\left\langle\cdot, k_{t}\right\rangle_{\mathcal{X}}$. This allows us to define the kernel $k\left(t, t^{\prime}\right)=\left\langle k_{t}, k_{t^{\prime}}\right\rangle_{\mathcal{X}}$.

It can be shown that k characterises \mathcal{X}. The relation $x(t)=\langle x, k(\cdot, t)\rangle_{\mathcal{X}}$ is called the reproducing property.

Reproducing Kernel Hilbert Spaces

The native space of an RKHS is

$$
\left\{x: D \rightarrow \mathbb{R}:\|x\|_{\mathcal{X}}<\infty\right\}
$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty$, then

Then the native space of the RKHS associated to k is:

Reproducing Kernel Hilbert Spaces

The native space of an RKHS is

$$
\left\{x: D \rightarrow \mathbb{R}:\|x\|_{\mathcal{X}}<\infty\right\}
$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty$, then

Then the native space of the RKHS associated to k is:

Reproducing Kernel Hilbert Spaces

The native space of an RKHS is

$$
\left\{x: D \rightarrow \mathbb{R}:\|x\|_{\mathcal{X}}<\infty\right\}
$$

How is the native space related to the kernel?

Recall, from Mercer's theorem if $\int \sqrt{k(t, t)} \mathrm{d} \nu(t)<\infty$, then

$$
k\left(t, t^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(t) \psi_{i}\left(t^{\prime}\right)
$$

Then the native space of the RKHS associated to k is:

$$
\left\{x=\sum_{i=1}^{\infty} c_{i} \lambda_{i}^{\frac{1}{2}} \psi_{i}:\|x\|_{\mathcal{X}}^{2}=\sum_{i=1}^{\infty} c_{i}^{2}<\infty\right\}
$$

Approximation in RKHS

Examples of native spaces (notation: $\left.z_{+}^{k}:=(\max (0, z))^{k}\right)$:

Kernel $k\left(t, t^{\prime}\right)$	Native Space				
$\exp \left(-\left\\|t-t^{\prime}\right\\|^{2}\right)$	$\cap_{m \in \mathbb{N}} H^{m}(D)$				
$\left(c^{2}+\left\\|t-t^{\prime}\right\\|^{2}\right)^{-\beta}, \beta>\frac{d}{2}$	$H^{\beta-\frac{d}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{2}$	$H^{\frac{d}{2}+\frac{1}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{4}\left(4\left\\|t-t^{\prime}\right\\|+1\right)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$				

Here

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m>\frac{d}{2}$

Approximation in RKHS

Examples of native spaces (notation: $\left.z_{+}^{k}:=(\max (0, z))^{k}\right)$:

Kernel $k\left(t, t^{\prime}\right)$	Native Space				
$\exp \left(-\left\\|t-t^{\prime}\right\\|^{2}\right)$	$\cap_{m \in \mathbb{N}} H^{m}(D)$				
$\left(c^{2}+\left\\|t-t^{\prime}\right\\|^{2}\right)^{-\beta}, \beta>\frac{d}{2}$	$H^{\beta-\frac{d}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{2}$	$H^{\frac{d}{2}+\frac{1}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{4}\left(4\left\\|t-t^{\prime}\right\\|+1\right)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$				

Here

$$
H^{m}(D)=\left\{x: D \rightarrow \mathbb{R} \quad \text { s.t. } \quad\|x\|_{H^{m}(D)}^{2}=\sum_{|\alpha| \leq m}\left\|D^{\alpha} x\right\|_{L^{2}(D)}^{2}<\infty\right\}
$$

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m>\frac{d}{2}$.

Approximation in RKHS

Examples of native spaces (notation: $\left.z_{+}^{k}:=(\max (0, z))^{k}\right)$:

Kernel $k\left(t, t^{\prime}\right)$	Native Space				
$\exp \left(-\left\\|t-t^{\prime}\right\\|^{2}\right)$	$\cap_{m \in \mathbb{N}} H^{m}(D)$				
$\left(c^{2}+\left\\|t-t^{\prime}\right\\|^{2}\right)^{-\beta}, \beta>\frac{d}{2}$	$H^{\beta-\frac{d}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{2}$	$H^{\frac{d}{2}+\frac{1}{2}}(D)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{4}\left(4\left\\|t-t^{\prime}\right\\|+1\right)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$				

Here

$$
H^{m}(D)=\left\{x: D \rightarrow \mathbb{R} \quad \text { s.t. } \quad\|x\|_{H^{m}(D)}^{2}=\sum_{|\alpha| \leq m}\left\|D^{\alpha} x\right\|_{L^{2}(D)}^{2}<\infty\right\}
$$

is the Sobolev space of order $m \in \mathbb{N}$. It is well-defined for $m>\frac{d}{2}$.
Notation: $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}, D^{\alpha}=\frac{\alpha^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{m}^{\alpha_{m}}},\|x\|_{L^{2}(D)}^{2}:=\int x(t)^{2} \mathrm{~d} t$.

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$
\begin{aligned}
x\left(t_{1}\right) & =c_{1} \\
& \vdots \\
x\left(t_{n}\right) & =c_{n} .
\end{aligned}
$$

This is clearly ill-posed if $\operatorname{dim}(\mathcal{X})>n$.
Consider instead the regularised problem:

What is the relevance of the interpolant \hat{x} ? It is the posterior mean under the Gaussian process prior $P_{x}=\mathcal{G} \mathcal{P}(0, k)$ combined with the data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$
\begin{aligned}
x\left(t_{1}\right) & =c_{1} \\
& \vdots \\
& \\
x\left(t_{n}\right) & =c_{n} .
\end{aligned}
$$

This is clearly ill-posed if $\operatorname{dim}(\mathcal{X})>n$.
Consider instead the regularised problem:

What is the relevance of the interpolant \hat{x} ? It is the posterior mean under the Gaussian process prior $P_{x}=\mathcal{G} \mathcal{P}(0, k)$ combined with the data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$
\begin{aligned}
x\left(t_{1}\right) & =c_{1} \\
& \vdots \\
& \\
x\left(t_{n}\right) & =c_{n} .
\end{aligned}
$$

This is clearly ill-posed if $\operatorname{dim}(\mathcal{X})>n$.
Consider instead the regularised problem:

$$
\begin{aligned}
& x\left(t_{1}\right)=c_{1} \\
& \hat{x}:=\underset{x \in \mathcal{X}}{\arg \inf }\|x\| \mathcal{X} \quad \text { s.t. } \quad \begin{array}{c}
\\
\\
\\
\\
\\
x\left(t_{n}\right)=c_{n}
\end{array}
\end{aligned}
$$

What is the relevance of the interpolant \hat{x} ? It is the posterior mean under the Gaussian process prior $P_{x}=\mathcal{G} \mathcal{P}(0, k)$ combined with the data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$
\begin{aligned}
x\left(t_{1}\right) & =c_{1} \\
& \vdots \\
x\left(t_{n}\right) & =c_{n} .
\end{aligned}
$$

This is clearly ill-posed if $\operatorname{dim}(\mathcal{X})>n$.
Consider instead the regularised problem:

$$
\hat{x}:=\begin{array}{clccc}
& & x\left(t_{1}\right) & = & c_{1} \\
\operatorname{arginf}\|x\|_{\mathcal{X}} & \text { s.t. } & & \vdots & \\
& & x\left(t_{n}\right) & = & c_{n}
\end{array}
$$

What is the relevance of the interpolant \hat{x} ? It is the posterior mean under the Gaussian
process prior $P_{x}=\mathcal{G} \mathcal{P}(0, k)$ combined with the data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$

Approximation in RKHS

Consider the task of estimation of $x \in \mathcal{X}$ based on the information that

$$
\begin{aligned}
x\left(t_{1}\right) & =c_{1} \\
& \vdots \\
x\left(t_{n}\right) & =c_{n} .
\end{aligned}
$$

This is clearly ill-posed if $\operatorname{dim}(\mathcal{X})>n$.
Consider instead the regularised problem:

$$
\hat{x}:=\begin{array}{clccc}
& & x\left(t_{1}\right) & = & c_{1} \\
\operatorname{arginf}\|x\|_{\mathcal{X}} & \text { s.t. } & & \vdots & \\
& & x\left(t_{n}\right) & = & c_{n}
\end{array}
$$

What is the relevance of the interpolant \hat{x} ? It is the posterior mean under the Gaussian process prior $P_{x}=\mathcal{G} \mathcal{P}(0, k)$ combined with the data $\left\{\left(t_{i}, x\left(t_{i}\right)\right)\right\}_{i=1}^{n}$.

Approximation in RKHS

In general $|\hat{x}(t)-x(t)| \leq p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)\|x\|_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X}. Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

exists then, from linear algebra, there exist functions such that

$$
\varphi_{i}\left(t_{j}\right)=\delta_{i j}, \quad \varphi_{i} \in \operatorname{span}\left\{k\left(, t_{j}\right), j=1, \ldots, n\right\}
$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x}=\sum_{i=1}^{n} c_{i} \varphi_{i}=\sum_{i=1}^{n} \times\left(t_{i}\right) \varphi_{1}$

Approximation in RKHS

In general $|\hat{x}(t)-x(t)| \leq p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)\|x\|_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X}. Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
k\left(t_{1}, t_{1}\right) & \ldots & k\left(t_{1}, t_{n}\right) \\
\vdots & & \vdots \\
k\left(t_{n}, t_{1}\right) & \ldots & k\left(t_{n}, t_{n}\right)
\end{array}\right] .
$$

If K^{-1} exists then, from linear algebra, there exist functions such that

$$
\varphi_{i}\left(t_{j}\right)=\delta_{i j}, \quad \varphi_{i} \in \operatorname{span}\left\{k\left(\cdot, t_{j}\right), j=1, \ldots, n\right\}
$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x}=\sum_{i=1}^{n} c_{i} \varphi_{i}=\sum_{i=1}^{n} \times\left(t_{i}\right) \varphi_{1}$

Approximation in RKHS

In general $|\hat{x}(t)-x(t)| \leq p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)\|x\|_{\mathcal{X}}$ where $p_{\mathcal{X}}$ is the power function associated to \mathcal{X}. Our aim now is to understand more about $p_{\mathcal{X}}$.

Consider the kernel matrix

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
k\left(t_{1}, t_{1}\right) & \ldots & k\left(t_{1}, t_{n}\right) \\
\vdots & & \vdots \\
k\left(t_{n}, t_{1}\right) & \ldots & k\left(t_{n}, t_{n}\right)
\end{array}\right] .
$$

If K^{-1} exists then, from linear algebra, there exist functions such that

$$
\varphi_{i}\left(t_{j}\right)=\delta_{i j}, \quad \varphi_{i} \in \operatorname{span}\left\{k\left(\cdot, t_{j}\right), j=1, \ldots, n\right\}
$$

Representer Theorem

The regularised estimate \hat{x} is given by $\hat{x}=\sum_{i=1}^{n} c_{i} \varphi_{i}=\sum_{i=1}^{n} x\left(t_{i}\right) \varphi_{i}$.

Approximation in RKHS

Derivation of the power function:

$$
|x(t)-\hat{x}(t)|=\left|x(t)-\sum_{i=1}^{n} x\left(t_{i}\right) \varphi_{i}(t)\right|
$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

Approximation in RKHS

Derivation of the power function:

$$
\begin{aligned}
|x(t)-\hat{x}(t)| & =\left|x(t)-\sum_{i=1}^{n} x\left(t_{i}\right) \varphi_{i}(t)\right| \\
& =\left|\left\langle x, k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\rangle_{\mathcal{X}}\right| \quad \text { (reproducing property) } \\
& \leq\|x\|_{x} \| k(\cdot, t)-\left.\sum^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right|_{\chi} \quad \text { (Cauchy-Schwarz) }
\end{aligned}
$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

Approximation in RKHS

Derivation of the power function:

$$
\begin{aligned}
|x(t)-\hat{x}(t)| & =\left|x(t)-\sum_{i=1}^{n} x\left(t_{i}\right) \varphi_{i}(t)\right| \\
& =\left|\left\langle x, k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\rangle_{\mathcal{X}}\right| \quad \text { (reproducing property) } \\
& \leq\|x\|_{\mathcal{X}} \underbrace{\left\|k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\|_{\mathcal{X}}}_{p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)} \quad \text { (Cauchy-Schwarz) }
\end{aligned}
$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

Approximation in RKHS

Derivation of the power function:

$$
\begin{aligned}
|x(t)-\hat{x}(t)| & =\left|x(t)-\sum_{i=1}^{n} x\left(t_{i}\right) \varphi_{i}(t)\right| \\
& =\left|\left\langle x, k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\rangle_{\mathcal{X}}\right| \quad \text { (reproducing property) } \\
& \leq\|x\|_{\mathcal{X}} \underbrace{\left\|k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\|_{\mathcal{X}}}_{p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)} \quad \text { (Cauchy-Schwarz) }
\end{aligned}
$$

To study \hat{x} (the posterior mean in a Gaussian process regression) we need to consider the mathematical properties of

$$
p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)=\left\|k(\cdot, t)-\sum_{i=1}^{n} \varphi_{i}(t) k\left(\cdot, t_{i}\right)\right\|_{\mathcal{X}}
$$

Approximation in RKHS

Equip $D \subset \mathbb{R}^{d}$ with the Euclidean norm $\|\cdot\|$.
Let $h=\sup _{t \in D} \min _{i=1, \ldots, n}\left\|t-t_{i}\right\|$ denote the fill distance of the points t_{1}, \ldots, t_{n} in D.
Then bounds of the form $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

and that's enough theoretical background!

Approximation in RKHS

Equip $D \subset \mathbb{R}^{d}$ with the Euclidean norm $\|\cdot\|$.
Let $h=\sup _{t \in D} \min _{i=1, \ldots, n}\left\|t-t_{i}\right\|$ denote the fill distance of the points t_{1}, \ldots, t_{n} in D.
Then bounds of the form $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

and that's enough theoretical background!

Approximation in RKHS

Equip $D \subset \mathbb{R}^{d}$ with the Euclidean norm $\|\cdot\|$.
Let $h=\sup _{t \in D} \min _{i=1, \ldots, n}\left\|t-t_{i}\right\|$ denote the fill distance of the points t_{1}, \ldots, t_{n} in D.
Then bounds of the form $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right) \leq F(h)$ can be obtained (e.g. see Sec. 11.3 of Wendland [2004]):

Kernel $k\left(t, t^{\prime}\right)$	Native Space	$F(h)$				
$\exp \left(-\left\\|t-t^{\prime}\right\\|^{2}\right)$	$\cap_{m \in \mathbb{N}} H^{m}(D)$	$\exp (-c\|\log (h)\| / h)$				
$\left(c^{2}+\left\\|t-t^{\prime}\right\\|^{2}\right)^{-\beta}, \beta>\frac{d}{2}$	$H^{\beta-\frac{d}{2}}(D)$	$\exp (-c / h)$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{2}$	$H^{\frac{d}{2}+\frac{1}{2}}(D)$	$h^{\frac{1}{2}}$				
$\left(1-\left\\|t-t^{\prime}\right\\|\right)_{+}^{4}\left(4\left\\|t-t^{\prime}\right\\|+1\right)$	$H^{\frac{d}{2}+\frac{3}{2}}(D)$	$h^{\frac{3}{2}}$				

... and that's enough theoretical background!

Seventh Job: Solution of Integrals, in Detail

Solution of Integrals

Consider estimation of the Quantity of Interest

$$
Q(x)=\int x(t) \mathrm{d} \nu(t)
$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^{d}$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

l.e. we must select points $\left\{t_{i}\right\}_{i=1}^{n}$ at which to evaluate the integrand. But how?

Solution of Integrals

Consider estimation of the Quantity of Interest

$$
Q(x)=\int x(t) \mathrm{d} \nu(t)
$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^{d}$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

$$
A(x)=\left[\begin{array}{c}
x\left(t_{1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]
$$

l.e. we must select points $\left\{t_{i}\right\}_{i=1}^{n}$ at which to evaluate the integrand. But how?

Solution of Integrals

Consider estimation of the Quantity of Interest

$$
Q(x)=\int x(t) \mathrm{d} \nu(t)
$$

where x is an integrand of interest and ν is a measure on $D \subseteq \mathbb{R}^{d}$.

In the Bayesian approach to Probabilistic Numerics, we must select an information operator

$$
A(x)=\left[\begin{array}{c}
x\left(t_{1}\right) \\
\vdots \\
x\left(t_{n}\right)
\end{array}\right]
$$

l.e. we must select points $\left\{t_{i}\right\}_{i=1}^{n}$ at which to evaluate the integrand. But how?

Monte Carlo \& Quasi-Monte Carlo Points

Monte Carlo
$\mathcal{F}=$
$L^{2}(D)$
$O_{P}\left(n^{-1 / 2}\right)$

Sobol Sequence
$H^{1}(D)$
$O\left(n^{-1}\right)$

Higher-Order Digital Net
$H_{\text {mix }}^{\beta}:=H_{1}^{\beta}(D) \times \cdot \times H_{1}^{\beta}(D)$
$O\left(n^{-\beta}\right)$

Here we show worst case error $\operatorname{ewCE}^{\operatorname{WCl}}(M)$ for the method $M=(A, b)$ where $b(a)=\frac{1}{n} \sum_{i=1}^{n} a_{i}$. i.e. an un-weighted average of function evaluations at the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{x \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.

The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

$$
\begin{aligned}
|D(A(x))-Q(x)| & \leq\|\hat{x}-x\|_{L^{2}(\nu)} \quad \text { (regression bound) } \\
& \leq\|\hat{x}-x\|_{\infty} \quad \text { (sup bound) } \\
& \leq p_{\chi}\left(t_{1}, \ldots, t_{n}\right)\|x\|_{x} \quad \text { (RKHS fill-distance bound) }
\end{aligned}
$$

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{x \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.

The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{x \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.
The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{x \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.
The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}.

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{\times \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.
The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

$$
|b(A(x))-Q(x)| \leq\|\hat{x}-x\|_{L^{2}(\nu)} \quad \text { (regression bound) }
$$

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{\times \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.
The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

$$
\begin{aligned}
|b(A(x))-Q(x)| & \leq\|\hat{x}-x\|_{L^{2}(\nu)} \quad \text { (regression bound) } \\
& \leq\|\hat{x}-x\|_{\infty} \quad \text { (sup bound) }
\end{aligned}
$$

Bayesian Quadrature

Bayesian Quadrature is a Bayesian probabilistic numerical method based on a Gaussian prior $P_{x}: x \sim \mathcal{G P}(0, k)$.

The mean of the posterior $Q_{\#} P_{x \mid a}$ is denoted $b(a)$. It satisfies

$$
b(a)=\int \hat{x}(t) \mathrm{d} \nu(t)
$$

where \hat{x} is the RKHS interpolant based on the information $A(x)=a$.
The performance of the posterior mean b, viewed as a classical numerical method, can be studied with our established results on RKHS interpolants:

Suppose D is a bounded subset of \mathcal{X}. Then:

$$
\begin{aligned}
|b(A(x))-Q(x)| & \leq\|\hat{x}-x\|_{L^{2}(\nu)} \quad \text { (regression bound) } \\
& \leq\|\hat{x}-x\|_{\infty} \quad(\text { sup bound }) \\
& \leq p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)\|x\|_{\mathcal{X}} \quad \text { (RKHS fill-distance bound) }
\end{aligned}
$$

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.


```
Let \mathcal{X}=[0,1\mp@subsup{]}{}{d},\nu}\mathrm{ be uniform on D and let the points {}{\mp@subsup{t}{i}{}\mp@subsup{}}{i=1}{n}\mathrm{ be quasi-uniform over }
(i.e. }h=O(\frac{1}{n})).\mathrm{ Then }\existsC\mathrm{ s.t. whenever }\alpha>\frac{d}{2
```

$$
\operatorname{exce}(M)=O\left(n^{-1 / d}\right)
$$

for all $\epsilon>0$.

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
e Ontimal rate for the W/CF of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$). Then $\exists C$ s.t. whenever $\alpha>\frac{d}{2}$ $\operatorname{exCE}(M)=O\left(n^{-1 / d}\right)$

- Recall that \hat{b} is the trapezoidal rule - so this matches known results
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^{1}(D)$
- The method of proof can be extended to other domains/measures/point sets

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$).
$\operatorname{ewce}(M)=O\left(n^{-1 / d}\right)$

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
- Optimal rate for the W/CF of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$). Then $\exists C$ s.t. whenever $\alpha>\frac{d}{2}$:

$$
\operatorname{exCE}(M)=O\left(n^{-1 / d}\right)
$$

for all $\epsilon>0$.

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$). Then $\exists C$ s.t. whenever $\alpha>\frac{d}{2}$:

$$
\operatorname{exCE}(M)=O\left(n^{-1 / d}\right)
$$

for all $\epsilon>0$.

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$). Then $\exists C$ s.t. whenever $\alpha>\frac{d}{2}$:

$$
\operatorname{ewce}(M)=O\left(n^{-1 / d}\right)
$$

for all $\epsilon>0$.

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Bayesian Quadrature

Thus, the analysis of Bayesian Quadrature can be reduced to analysis of how the power function $p_{\mathcal{X}}\left(t_{1}, \ldots, t_{n}\right)$ depends on the choice of the points $\left\{t_{i}\right\}_{i=1}^{n}$.

Let $\mathcal{X}=H^{1}(D)$ be the standard Sobolev space, with an appropriate choice of kernel k. Let $\mathcal{X}=[0,1]^{d}, \nu$ be uniform on D and let the points $\left\{t_{i}\right\}_{i=1}^{n}$ be quasi-uniform over D (i.e. $h=O\left(\frac{1}{n}\right)$). Then $\exists C$ s.t. whenever $\alpha>\frac{d}{2}$:

$$
\operatorname{ewce}(M)=O\left(n^{-1 / d}\right)
$$

for all $\epsilon>0$.

- Recall that \hat{b} is the trapezoidal rule - so this matches known results.
- Optimal rate for the WCE of a deterministic method for integration of functions in the space $H^{1}(D)$.
- The method of proof can be extended to other domains/measures/point sets.

Bayesian Quadrature

The mean $b(a)$ of the posterior $Q_{\#} P_{x \mid a}$ can be considered as a classical numerical method and we can ask about optimal information for b, either in the sense of worst-case or average-case optimal.

The variance of the posterior $Q_{\#} P_{x \mid a}$ is equal to ewCE $(M)^{2}$ where $M=(A, b)$
(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X}=H^{1}(D)$ example, with $D=[0,1]$ the kernel $k\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$, we will prove later that optimal information (i.e. the points $\left\{t_{i}\right\}_{i=1}^{n}$ that minimise the posterior variance) are a uniform grid over $[0,1]$.

Bayesian Quadrature

The mean $b(a)$ of the posterior $Q_{\#} P_{x \mid a}$ can be considered as a classical numerical method and we can ask about optimal information for b, either in the sense of worst-case or average-case optimal. But why would this be relevant?

The variance of the posterior $Q_{\#} P_{x \mid a}$ is equal to ewce $(M)^{2}$ where $M=(A, b)$
(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X}=H^{1}(D)$ example, with $D=[0,1]$ the kernel $k\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$, we will prove later that optimal information (i.e. the points $\left\{t_{i}\right\}_{i=1}^{n}$ that minimise the posterior variance) are a uniform grid over $[0,1]$

Bayesian Quadrature

The mean $b(a)$ of the posterior $Q_{\#} P_{x \mid a}$ can be considered as a classical numerical method and we can ask about optimal information for b, either in the sense of worst-case or average-case optimal. But why would this be relevant?

The variance of the posterior $Q_{\#} P_{x \mid a}$ is equal to êCEE $(M)^{2}$ where $M=(A, b)$.
(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X}=H^{1}(D)$ example, with $D=[0,1]$ the kernel $k\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$, we will prove later that optimal information (i.e. the points $\left\{t_{i}\right\}_{i=1}^{n}$ that minimise the posterior variance) are a uniform grid over [0, 1]

Bayesian Quadrature

The mean $b(a)$ of the posterior $Q_{\#} P_{x \mid a}$ can be considered as a classical numerical method and we can ask about optimal information for b, either in the sense of worst-case or average-case optimal. But why would this be relevant?

The variance of the posterior $Q_{\#} P_{x \mid a}$ is equal to êCCE $(M)^{2}$ where $M=(A, b)$.
(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X}=H^{1}(D)$ example, with $D=[0,1]$ the kernel $k\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$, we will
prove later that optimal information (i.e. the points $\left\{t_{i}\right\}_{i=1}^{n}$ that minimise the posterior
variance) are a uniform gric over $[0,1]$

Bayesian Quadrature

The mean $b(a)$ of the posterior $Q_{\#} P_{x \mid a}$ can be considered as a classical numerical method and we can ask about optimal information for b, either in the sense of worst-case or average-case optimal. But why would this be relevant?

The variance of the posterior $Q_{\#} P_{x \mid a}$ is equal to êCEE $(M)^{2}$ where $M=(A, b)$.
(This is a special case of the fact from Bayesian decision theory that (for equaliser rules) minimax \leftrightarrow Bayes.)

For the $\mathcal{X}=H^{1}(D)$ example, with $D=[0,1]$ the kernel $k\left(t, t^{\prime}\right)=\min \left(t, t^{\prime}\right)$, we will prove later that optimal information (i.e. the points $\left\{t_{i}\right\}_{i=1}^{n}$ that minimise the posterior variance) are a uniform grid over $[0,1]$.

Posterior Contraction

Of course, we are not interested in just the mean of $Q_{\#} P_{x \mid a}$ but the full distribution $Q_{\#} P_{x \mid a}$ itself.

A basic question is "does this probability mass contract to the true value $Q(x)$?"

For Bayesian Quadrature, where P_{x} is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $\|x\|_{\mathcal{X}}<\infty$, then for all $\epsilon>0$ there exists C_{ϵ} such that:

where $I_{\text {true }}$ is the true value of the integral and $M=(A, B), B=Q_{\#} P_{x \mid a}$.

Posterior Contraction

Of course, we are not interested in just the mean of $Q_{\#} P_{x \mid a}$ but the full distribution $Q_{\#} P_{x \mid a}$ itself.

A basic question is "does this probability mass contract to the true value $Q(x)$?"

For Bayesian Quadrature, where P_{x} is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $\|x\|_{\mathcal{X}}<\infty$, then for all $\epsilon>0$ there exists C_{ϵ} such that:

where $I_{\text {true }}$ is the true value of the integral and $M=(A, B), B=Q_{\#} P_{x \mid a}$.

Posterior Contraction

Of course, we are not interested in just the mean of $Q_{\#} P_{x \mid a}$ but the full distribution $Q_{\#} P_{x \mid a}$ itself.

A basic question is "does this probability mass contract to the true value $Q(x)$?"

For Bayesian Quadrature, where P_{x} is Gaussian, this can be answered through the properties of Gaussians:

For Bayesian Quadrature, if the true integrand satisfies $\|x\|_{\mathcal{X}}<\infty$, then for all $\epsilon>0$ there exists C_{ϵ} such that:

$$
Q_{\#} P_{x \mid a}\left(I_{\text {true }}-\epsilon, I_{\text {true }}+\epsilon\right)=1-o\left(\exp \left(-C_{\epsilon} / \operatorname{eWCE}(M)^{2}\right)\right)
$$

where $I_{\text {true }}$ is the true value of the integral and $M=(A, B), B=Q_{\#} P_{x \mid a}$.

Calibration

THINGS GOT REALLY INTERESTING WHEN THE STATISTICIAN STARTED DOING WARD ROUNDS.

Calibration of Bayesian Quadrature

Given a specific kernel, e.g. Matérn kernel below:

$$
k_{\alpha}\left(t, t^{\prime} ; \sigma, \lambda\right):=\lambda^{2} \prod_{i=1}^{d} \frac{2^{1-\alpha}}{\Gamma(\alpha)}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)^{\alpha} K_{\alpha}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)
$$

we need to specify hyper-parameters (λ, σ).
These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider empirical Bayes, which entails maximising the marginal likelihood of the data over the hyper-parameters:
$\operatorname{argmax}_{\sigma, \lambda} p\left(\left\{x\left(t_{i}\right)\right\}^{n}=1 \mid \sigma, \lambda,\left\{t_{i}\right\}^{n}=1\right)$

Theoretically difficult to estimate α - see counterexamples in Szabó et al. [2015]

Calibration of Bayesian Quadrature

Given a specific kernel, e.g. Matérn kernel below:

$$
k_{\alpha}\left(t, t^{\prime} ; \sigma, \lambda\right):=\lambda^{2} \prod_{i=1}^{d} \frac{2^{1-\alpha}}{\Gamma(\alpha)}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)^{\alpha} K_{\alpha}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)
$$

we need to specify hyper-parameters (λ, σ).
These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider empirical Bayes, which entails maximising the marginal likelihood of the data over the hyper-parameters:
$\operatorname{argmax}_{\sigma, \lambda} p\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n} \mid \sigma, \lambda,\left\{t_{i}\right\}_{i=1}^{n}\right)$

Theoretically difficult to estimate α-see counterexamples in Szabó et al. [2015]

Calibration of Bayesian Quadrature

Given a specific kernel, e.g. Matérn kernel below:

$$
k_{\alpha}\left(t, t^{\prime} ; \sigma, \lambda\right):=\lambda^{2} \prod_{i=1}^{d} \frac{2^{1-\alpha}}{\Gamma(\alpha)}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)^{\alpha} K_{\alpha}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)
$$

we need to specify hyper-parameters (λ, σ).
These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider empirical Bayes, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$
\operatorname{argmax}_{\sigma, \lambda} p\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n} \mid \sigma, \lambda,\left\{t_{i}\right\}_{i=1}^{n}\right)
$$

Theoretically difficult to estimate α-see counterexamples in Szabó et al. [2015]

Calibration of Bayesian Quadrature

Given a specific kernel, e.g. Matérn kernel below:

$$
k_{\alpha}\left(t, t^{\prime} ; \sigma, \lambda\right):=\lambda^{2} \prod_{i=1}^{d} \frac{2^{1-\alpha}}{\Gamma(\alpha)}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)^{\alpha} K_{\alpha}\left(\frac{\sqrt{2 \alpha}\left|t_{i}-t_{i}^{\prime}\right|}{\sigma}\right)
$$

we need to specify hyper-parameters (λ, σ).
These hyper-parameters can greatly influence the posterior mean and variance. From a Bayesian perspective, these need to be set adequately to obtain good quantification of uncertainty.

In this Part, we consider empirical Bayes, which entails maximising the marginal likelihood of the data over the hyper-parameters:

$$
\operatorname{argmax}_{\sigma, \lambda} p\left(\left\{x\left(t_{i}\right)\right\}_{i=1}^{n} \mid \sigma, \lambda,\left\{t_{i}\right\}_{i=1}^{n}\right)
$$

Theoretically difficult to estimate α - see counterexamples in Szabó et al. [2015].

Calibration on Test Functions

Calibration on Test functions

- Empirical Bayes can be over-confident when n is small.
- Alternative option would be marginalisation - but requires that a hyper-prior be specified.

Conclusion

In Part III it has been argued that:

- For Gaussian priors P_{x}, the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#} P_{x l_{a}}$ reduced to analysis of the posterior mean $b(a)$ and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

Conclusion

In Part III it has been argued that:

- For Gaussian priors P_{x}, the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#} P_{x \mid a}$ reduced to analysis of the posterior mean $b(a)$ and was classical.
- Calibration of uncertainty remains an important open problem.

Conclusion

In Part III it has been argued that:

- For Gaussian priors P_{x}, the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#} P_{x \mid a}$ reduced to analysis of the posterior mean $b(a)$ and was classical.
- Calibration of uncertainty remains an important open problem.

Conclusion

In Part III it has been argued that:

- For Gaussian priors P_{x}, the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#} P_{x \mid a}$ reduced to analysis of the posterior mean $b(a)$ and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

Conclusion

In Part III it has been argued that:

- For Gaussian priors P_{x}, the theory of approximation in RKHS is important.
- For Bayesian Quadrature, the analysis of the full posterior $Q_{\#} P_{x \mid a}$ reduced to analysis of the posterior mean $b(a)$ and was classical.
- Calibration of uncertainty remains an important open problem.

END OF PART III

