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History of Probabilistic Numerical Methods

Gaussian Measure in Hilbert Space and Applications in Nu-
merical Analysis

F. M. LARKIN, Queen’s University, Kingston, Ontario

Rocky Mountain Journal of Mathematics, 2(3), 379–422,
1972.

The numerical analyst is often called upon to estimate
a function from a very limited knowledge of its prop-
erties (e.g. a finite number of ordinate values). This
problem may be made well posed in a variety of ways,
but an attractive approach is to regard the required
function as a member of a linear space on which a
probability measure is constructed, and then use estab-
lished techniques of probability theory and statistics in
order to infer properties of the function from the given
information. This formulation agrees with established
theory, for the problem of optimal linear approxima-
tion (using a Gaussian probability distribution), and
also permits the estimation of nonlinear functionals,
as well as extension to the case of “noisy” data.
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Fourth Job: Check Well-Defined, Existence and Uniqueness
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Recap of Part I

Recall our set-up:

Consider an unobserved state x ∈ X and a quantity of interest Q(x).

Given an information operator A : X → A.

Given a prior distribution Px ∈ PX .

A Bayesian Probabilistic Numerical Method returns B(a,Px) = Q#Px|a.

But what is Px|a?
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Well-Defined?

The need to ensure that Px|a is well defined has, in part, motivated conjugate Gaussian
process methods:

Restriction to Gaussian prior distributions Px ∈ PX
Often focused just on linear information operator x 7→ A(x)

Outside of this context even existence of Bayesian probabilistic numerical methods is
non-trivial when dim(X ) =∞:

p(x |a) =
p(a|x)p(x)

p(a)

No Lebesgue measure =⇒ work instead with Radon-Nikodym derivatives:

dPx|a

dPx
=

p(a|x)

p(a)

Let’s define this object.
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Well-Defined?

Standard tools of infinite dimensional statistics:

A probability measure ν on (X ,ΣX ) is said to be absolutely continuous with respect to
another probability measure ν′ (written ν � ν′) on the same space if

ν′(A) = 0 =⇒ ν(A) = 0

Radon-Nikodym Theorem

If ν � ν′ then there exists a measurable function dν
dν′ : X → R+ such that, for all

A ∈ ΣX ,

ν(A) =

∫
A

dν

dν′
(x)dν′(x)

For ν′ the Lebesgue measure, we would usually call dν/dν′ the density of the random
variable X ∼ ν.
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Conditioning on Null Sets

Consider, for now, dim(X ) = 2 and condition a uniform measure Px over X = [−1, 1]2 on
the information that x1 = a, for some fixed a ∈ [−1, 1].

Measure on this

X a = {x2 : x1 = a}

Informal answer: the conditional measure Px|a is “obviously” uniform over [−1, 1]

How to generalise this to infinite dimensional state spaces X ? It is not clear, because X a

is not easy to parametrise in general!
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Conditioning on Null Sets

In our toy setting we want the support of the posterior to be

X a = {x2 : x1 = a}

However
Px|a(X a) = 1

but. . .
Px(X a) = 0

and this is the case for generic prior measures on X because X a defines a submanifold of
X .

Thus Px|a will not be absolutely continuous wrt the prior Px , and we cannot rely on the
standard tools based on Radon-Nikodym derivatives in general.
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Conditioning on Null Sets

“a conditional probability relative to an isolated hypothesis whose probability
equals zero is inadmissible”

—Kolmogorov [1933]
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Conditioning on Null Sets

Borel-Kolmogorov paradox1:

(latitude = red, longitude = blue)

To make progress it is required to introduce measure-theoretic detail.

1Figures from Greg Gandenberger’s blog post
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Disintegration

High-level idea: Additional structure on X , A and A : X → A is needed:

Let (X ,ΣX ), (A,ΣA) and (Q,ΣQ) be measurable spaces and A, Q be measurable.

Due to Dellacherie and Meyer [1978, p.78]:

For Px ∈ PX , a collection {Px|a}a∈A ⊂ PX is a disintegration of Px with respect to the
map A : X → A if:

1 (Concentration:) Px|a(X \ {x ∈ X : A(x) = a}) = 0 for A#Px -almost all a ∈ A;

and for each measurable f : X → [0,∞) it holds that

2 (Measurability:) a 7→ Px|a(f ) is measurable;

3 (Conditioning:) Px(f ) =
∫
Px|a(f )A#Px(da).
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Existence and Uniqueness

Disintegration Theorem; statement from Thm. 1 of Chang and Pollard [1997]:

Let X be a metric space, ΣX be the Borel σ-algebra.

Let Px ∈ PX be Radon.

Let ΣA be a countably generated σ-algebra that contains singletons {a} for a ∈ A.

Then there exists an (essentially) unique disintegration {Px|a}a∈A of Px with respect to
A.

Let (Q,ΣQ) be a measurable spaces and Q be measurable.

Then Bayesian probabilistic numerical methods B(Px , a) = Q#Px|a are well-defined under
quite general conditions.

In particular, Q#Px|a exists and is unique for A#Px almost all a ∈ A.
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Fifth Job: Algorithms to Access Px |a
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Overview

The aim of this section is to develop an algorithm to approximate Px|a and hence
B(a,Px) = Q#Px|a.

This will be achieved by designing a sampler for Px|a.

Sampling Px|a Challenge Non-Conjugate Challenge
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Numerical Disintegration

Recall
X a = {x ∈ X : A(x) = a}

Px(X a) = 0

}
=⇒ @

dPx|a

dPx

Thus, standard techniques from infinite-dimensional statistics cannot be directly applied.

Our approach is to force the problem into the standard context, by approximating Px|a
with a relaxed measure Pδx|a for which a Radon-Nikodym derivative is defined:

dPδx|a
dPx

∝ φ
(
‖A(x)− a‖A

δ

)

φ : R+ → R+ a relaxation function chosen so that:

φ(0) = 1

φ(r)→ 0 as r →∞.

Idea is that this approaches Px|a as δ ↓ 0 (to be formalised).

Note that a norm structure has now been assumed on A (e.g. A = Rn).
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φ(0) = 1

φ(r)→ 0 as r →∞.

Idea is that this approaches Px|a as δ ↓ 0 (to be formalised).

Note that a norm structure has now been assumed on A (e.g. A = Rn).
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Example Relaxation Functions

φ(r) = I(r < 1)

Pδx|a is the conditional distribution X |A(X ) ∈ Bδ(a)

Equivalent to assuming uniform noise over Bδ(a) on the information A(X ).

Equivalent to rare event simulation: A#Px(Bδ(a))→ 0 as δ → 0.

Equivalent to approximate Bayesian computation (ABC) rejection algorithm.

φ(r) = exp(−r 2)

Equivalent to assuming IID Gaussian noise N(0, 2δ) on the information A(X ).

Gives access to nontrivial gradient information in the samplers.
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Key Idea: Tempering

Consider a standard Bayesian inference problem for unknown θ with data y .

Prior p(θ), which is easy to sample.

Posterior p(θ|y) ∝ p(y |θ)p(θ), which is hard to sample.

Define intermediate distributions by tempering

pt(θ|y) ∝ p(y |θ)tp(θ)

The idea is to interpolate between the easy and the hard problem.
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Key Idea: Tempering

Prior Posterior
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Tempering for Sampling Pδx |a

To sample Pδx|a we take inspiration from rare event simulation and use tempering schemes
to sample the posterior.

Set ∞ = δ0 > δ1 > . . . > δN = δ and consider

Px = Pδ0
x|a, P

δ1
x|a, . . . , P

δN
x|a = Pδx|a

Px = Pδ0
x|a is the prior distribution (often easy to sample).

PδNx|a = Pδx|a is the target distribution.

Intermediate distributions define a “ladder” which smoothly interpolates from prior
to target.

For Px a Gaussian prior, efficient Monte Carlo methods are available based on
pre-conditioned Crank Nicholson and its extensions [Cotter et al., 2013]. Not going to
discuss further - too much detail - but remember this point for later!
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Example: Poisson’s Equation

Consider

− d2

dt2
x(t)= sin(2πt) t ∈ (0, 1)

x(t)= 0 t = 0, t = 1

Use a Gaussian prior on x .

Impose boundary conditions explicitly.

Impose interior conditions at t = 1/3, t = 2/3.

Construct the posterior using numerical disintegration with δ ∈
{

1.0, 10−2, 10−4
}

.

Use relaxation function φ(r) = exp(−r 2).

Facilitated with pre-conditioned Crank-Nicholson.
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Example: Poisson’s Equation

In what follows, on the left are samples from the relaxed posterior Pδx|a in X -space.

On the right are contours of

φ

(
‖A(x)− a‖A

δ

)
in A-space.

All tempering is left “under the hood”; we will just consider the effect of δ ↓ 0.

(Monte Carlo error was negligible in this example when tempering and pre-conditioned
Crank-Nicholson was used).
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Example: Poisson’s Equation
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Overview

Sampling Px|a Challenge Non-Conjugate Challenge

Sampler Convergence
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Non-Conjugate Challenge

Assume X admits a Schauder basis {φi}∞i=1, so that for any x ∈ X

x(t) =
∞∑
i=0

αiφi (t)

Recall that different ui require different γi for the sum to exist:

ui IID Uniform, γ ∈ `1

ui IID Gaussian, γ ∈ `2

ui IID Cauchy, γ ∈ `2

Key Idea: Update only the first N terms of the series based on the information
A(x) = a.

Equivalent to consider the information operator AN = A ◦ PN where PN is orthogonal
projection onto {φi}Ni=0 (assumes a Hilbert structure on X ).

More sophisticated (“likelihood informed”) alternatives to AN ; [Cui et al., 2014].
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Overview

Sampling Px|a Non-Conjugate Challenge

Sampler Convergence
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Convergence, but in what metric?

The aim here is to show that the two approximations

Px|a ≈ Pδx|a

A ≈ AN

combine to produce an approximation Pδ,Nx|a to the distribution Px|a of interest.

The results that we consider are formulated in terms of integration error:

dF (Pδ,Nx|a ,Px|a) = sup
‖f ‖F≤1

∣∣∣Pδ,Nx|a (f )− Px|a(f )
∣∣∣

where we use the notation ν(f ) =
∫
f dν.

The test functions f come from a normed space (F , ‖ · ‖F ). This can be chosen to
induce Wasserstein, total variation, etc.

NB: This is only useful when F is not “too rich”.
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Convergence of Pδx |a to Px |a

Assume that:

∃α > 0 s.t. Cαφ :=
∫
rα+n−1φ(r)dr <∞

∃Cµ > 0 s.t.

dF (Px|a,Px|a′) ≤ Cµ
∥∥a− a′

∥∥α
for A#µ-almost-all a, a′ ∈ A.

Then, for δ � 1,

dF (Pδx|a,Px|a) ≤ Cµ

(
1 +

Cαφ
C 0
φ

)
δα

for A#µ-almost-all a ∈ A Proof in Cockayne et al. [2017].
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Convergence of Pδ,Nx |a to Pδx |a

Denote by Pδ,Nx|a the approximation

dPδ,Nx|a

dPx
(x) ∝ φ

(
‖A ◦ PN(x)− a‖A

δ

)

Assume that:

∀R > 0 ∃CR s.t. | log φ(r)− log φ(r ′)| < CR |r − r ′| for all r , r ′ < R.

∃ measurable m s.t.

‖A(u)− A ◦ PN(u)‖ ≤ exp(m ‖u‖X )Φ(N)

where Φ(N) ↓ 0 and EX∼Px [exp(2m(‖X‖X ))] <∞.

supx∈X ‖A(x)‖A <∞
∃CF s.t. ‖f ‖∞ ≤ CF‖f ‖F for all f ∈ F .

Then dF (Pδ,Nx|a ,P
δ
x|a) ≤ CδΦ(N). Proof in Cockayne et al. [2017], builds on Stuart [2010].
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Example: Solution of a Non-linear ODE

Consider Painlevé’s first transcendental:

x ′′(t) = x(t)2 − t, t ∈ R+

x(0) = 0

t−1/2x(t) → 1 as t →∞
The information operator is

A(x) =


x ′′(t1)− x(t1)2

...
x ′′(tn)− x(tn)2

x(0)

limt→∞ t−1/2x(t)

 =


t1

...
tn
0
1

 .

Construct an infinite-dimensional prior Px ∈ PX as

x(t) =
∞∑
i=0

uiγiφi (t)

with ui i.i.d. std. Cauchy coefficients, weights γi = (i + 1)−2 and φi (t) (normalized)
Chebyshev polynomials of the first kind. [See Sullivan, 2016, for mathematical details.]
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Example: Solution of a Non-linear ODE

Consider Painlevé’s first transcendental:

x ′′(t) = x(t)2 − t, t ∈ R+

x(0) = 0

t−1/2x(t) → 1 as t →∞

Exact “positive” and “negative” solutions:
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Painlevé: Posterior Measures
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Painlevé: Posterior Measures

How might we explain the collapse of the posterior onto one solution?

Consider the spectra {ui}∞i=0 corresponding to the true solutions:
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Conclusion

In Part II it has been argued that:

Bayesian probabilistic numerical methods (BPNM) are well-defined under weak
conditions (X metric space, Px radon, ΣA countably generated).

The mathematical properties of the posterior Px|a are hard to understand in general.

Wide open area for research!

END OF PART II
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