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Motivation: Computational Pipelines

Numerical analysis for the “drag and drop” era of computational pipelines:

[Fig: IBM High Performance Computation]

The sophistication and scale of modern computer models creates an urgent need to better
understand the propagation and accumulation of numerical error within arbitrary - often
large - pipelines of computation, so that “numerical risk” to end-users can be controlled.
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Motivation: Solution of Poisson’s Equation

Consider numerical solution for x ∈ X of the Poisson equation

−∆x = f in D

x = g on ∂D

based on (noiseless) information of the form

A(x) =



−∆x(t1)
...

−∆x(tm)
x(tm+1)

...
x(tn)


=



f (t1)
...

f (tm)
g(tm+1)

...
g(tn)


, {ti}mi=1 ∈ D, {ti}di=m+1 ∈ ∂D.

This is an ill-posed inverse problem and must be regularised.

The onus is on us to establish principled statistical foundations that are general.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 5 / 183



Motivation: Solution of Poisson’s Equation

Consider numerical solution for x ∈ X of the Poisson equation

−∆x = f in D

x = g on ∂D

based on (noiseless) information of the form

A(x) =



−∆x(t1)
...

−∆x(tm)
x(tm+1)

...
x(tn)


=



f (t1)
...

f (tm)
g(tm+1)

...
g(tn)


, {ti}mi=1 ∈ D, {ti}di=m+1 ∈ ∂D.

This is an ill-posed inverse problem and must be regularised.

The onus is on us to establish principled statistical foundations that are general.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 5 / 183



Motivation: Solution of Poisson’s Equation

Consider numerical solution for x ∈ X of the Poisson equation

−∆x = f in D

x = g on ∂D

based on (noiseless) information of the form

A(x) =



−∆x(t1)
...

−∆x(tm)
x(tm+1)

...
x(tn)


=



f (t1)
...

f (tm)
g(tm+1)

...
g(tn)


, {ti}mi=1 ∈ D, {ti}di=m+1 ∈ ∂D.

This is an ill-posed inverse problem and must be regularised.

The onus is on us to establish principled statistical foundations that are general.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 5 / 183



Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 6 / 183



Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 6 / 183



Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 6 / 183



Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 6 / 183



Insight: Numerical Analysis as Bayesian Inversion

The Bayesian approach, popularised in Stuart (2010), can be used:

a prior measure Px is placed on X
a posterior measure Px|a is defined as the “restriction of Px to those functions
x ∈ X for which

A(x) = a e.g. A(x) =

−∆x(t1)
...

−∆x(tn)

 = a

is satisfied” (to be formalised).

=⇒ Principled and general uncertainty quantification for numerical methods.

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 6 / 183



The Agenda

Part I

1 First Job: Elicit the Abstract Structure

2 Second Job: Review of Classical Numerical Analysis

3 Third Job: Discuss Choice of Px

Part II

4 Fourth Job: Check Well-Defined, Existence and Uniqueness

5 Fifth Job: Algorithms to Access Px|a

Part III

4 Sixth Job: Analysis of the Gaussian Case

5 Seventh Job: Solution of Integrals, in Detail
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The Agenda

Part IV

4 Eighth Job: Solution of PDEs

5 Ninth Job: Characterise Optimal Information

Part V

4 Tenth Job: Extension to More Challenging Integrals

5 Eleventh Job: Non-Bayesian Methods?

Part VI

4 Twelfth Job: Introduction to Graphical Models

5 Thirteenth Job: Pipelines of Computation
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Part I
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History of Probabilistic Numerical Methods

Tests of Probabilistic Models for Propagation of Roundoff
Errors

T. E. HULL, University of Toronto; J. R. SWENSON, New
York University (Ed: J. Traub)

Communications of the ACM, 9(2):108–113, 1966.

In any prolonged computation it is generally as-
sumed that the accumulated effect of roundoff er-
rors is in some sense statistical. The purpose of
this paper is to give precise descriptions of certain
probabilistic models for roundoff error, and then
to describe a series of experiments for testing the
validity of these models. It is concluded that the
models are in general very good. Discrepancies
are both rare and mild. The test techniques can
also be used to experiment with various types of
special arithmetic.
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First Job: Elicit the Abstract Structure
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Abstract Structure

Abstractly, consider an unobserved state variable x ∈ X together with:

A quantity of interest, denoted Q(x) ∈ Q
An information operator, denoted x 7→ A(x) ∈ A. (dim(A) = n <∞)

Examples:

Task Q(x) A(x)

Integration
∫
x(t)ν(dt) {x(ti )}ni=1

Optimisation arg max x(t) {x(ti )}ni=1

Solution of Poisson Eqn x(·) {−∆x(ti )}mi=1 ∪ {x(ti )}ni=m+1

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 12 / 183



Abstract Structure

Abstractly, consider an unobserved state variable x ∈ X together with:

A quantity of interest, denoted Q(x) ∈ Q
An information operator, denoted x 7→ A(x) ∈ A. (dim(A) = n <∞)

Examples:

Task Q(x) A(x)

Integration
∫
x(t)ν(dt) {x(ti )}ni=1

Optimisation arg max x(t) {x(ti )}ni=1

Solution of Poisson Eqn x(·) {−∆x(ti )}mi=1 ∪ {x(ti )}ni=m+1

Chris. J. Oates Probabilistic Numerical Methods June 2017 @ Dobbiaco 12 / 183



Abstract Structure

Let P• denote the set of distributions on •.

Let T#µ denote the “pushforward” measure, st (T#µ)(S) = µ(T−1(S)).

Classical Numerical Probabilistic Numerical
Method Method

Inputs
Assumed e.g. smoothness Px ∈ PX

Information a ∈ A a ∈ A
Output b(a) ∈ Q B(Px , a) ∈ PQ

A Probabilistic Numerical Method is Bayesian iff B(Px , a) = Q#Px|a.
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The Grand Plan

The grand plan of these lectures is to study the object

B(Px , a) = Q#Px|a

of a Bayesian probabilistic numerical method in detail.

But, before we jump in, we will first review some background on classical numerical
analysis and information-based complexity of numerical methods.
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Second Job: Review of Classical Numerical Analysis
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Assessment of Numerical Methods

Consider a (classical) numerical method

b : A → Q

for instance the trapezoidal rule

b({x(ti )}ni=1) =
n−1∑
i=1

(ti+1 − ti )
x(ti+1)− x(ti )

2
.

In what sense should the performance of this method be assessed?

Typical considerations in numerical analysis:

1 Order of convergence

2 Numerical stability (e.g. floating point error propagation)

In the case of the trapezoidal rule, these are fairly dull.
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Information Based Complexity

Perhaps more interesting questions are raised in Information-Based Complexity:

Three core frameworks of information-based complexity:

1 “Worst-case” (minimise the maximal error)

2 “Average-case” (minimise the average error)

3 “Probabilistic” (minimise the cost required to achieve low error with high probability)

N.B. The third framework has (arguably) little to do with Probabilistic Numerics (as we
will see in Part IV). But, to avoid confusion of the terminology, we won’t discuss this
framework further.
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Worst Case Error

To set up the worst-case analysis, we need to restrict to a normed space (X , ‖ · ‖X ) and
introduce a loss function L : Q×Q → R.

Then define the worst case error of the method M = (A, b):

eWCE(M) = sup
‖x‖X≤1

L(b(A(x)),Q(x))

Can consider minimisation of eWCE(M) over the choice of b : A → Q:

arg inf
b:A→Q

eWCE(M)

Such methods are “worst case optimal” for the given information operator A.

e.g. for ‖x‖X = (
∫
x(t)2dt)1/2 and L(q, q′) = (q − q′)2, the trapezium rule is worst case

optimal for A(x) = [x(t1), . . . , x(tn)] (modulo technical details - see Part IV).
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Average Case Error

To set up the average-case analysis, we instead need to restrict to a measurable space
(X ,ΣX ) and introduce a distribution Px ∈ PX .

Then define the average case error of the method M = (A, b):

eACE(M) =

∫
L(b(A(x)),Q(x)) dPx

Can consider minimisation of eACE(M) over the choice of b : A → Q:

arg inf
b:A→Q

eACE(M)

Such methods are “average case optimal” for the information operator A.

e.g. for Px the Weiner process and L(q, q′) = (q − q′)2, the trapezium rule is average
case optimal for A(x) = [x(t1), . . . , x(tn)] (modulo technical details - see Part IV).
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Questions

Coincidence that the trapezoidal rule is both worst case optimal and average case
optimal?

Closely related to Probabilistic Numerics?

Well, both involve a choice for Px at least...
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Third Job: Discuss Choice of Px
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Prior Construction

Motivation: Beyond Gaussian Processes

Let (X , ‖ · ‖X ) be a Banach space (i.e. a complete normed vector space; in this case over
R) equipped with a Schauder basis {φi}∞i=1. i.e. for each x ∈ X there exists a unique
sequence α ∈ R∞ such that

x(·) =
∞∑
i=1

αiφi (·).

It will be further assumed that the basis is normalised, meaning that ‖φi‖X = 1 for all
i ∈ N.

Key Idea: Randomise the coefficients α ∼ Pω and consider the push-forward Px = T#Pω
where Tα =

∑∞
i=1 αiφi .

Question 1: How to select the basis elements φi?

Question 2: How to select the distribution of the coefficients αi?
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Selection of Basis Elements φi

Some insight is provided in the case where X is a reproducing kernel Hilbert space (see
Part III) by Mercer’s theorem:

Let k(t, t′) be a symmetric positive definite kernel on X . If∫ √
k(t, t)dν(t) < ∞

then there exist {ψi}∞i=1 ⊂ L2(ν) and {λi}∞i=1 ⊂ [0,∞) such that

k(t, t′) =
∞∑
i=1

λiψi (t)ψi (t
′) (“kernel trick”).

Moreover the {λ1/2
i ψi}ni=1 form an orthonormal basis of X .

So could, for instance, use φi = λ
1/2
i ψi to build a Schauder basis for X .

But we could equally take a basis of orthogonal polynomials, wavelets, etc. Next, we only
assume that we are provided with a normalised Schauder basis.
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Distribution of the Coefficients αi

Let {φi}∞i=1 be a (normalised) Schauder basis.

Consider a decomposition

αi = γi ui

where γi are fixed and ui are random; independent and identically distributed.

When does the summation

∞∑
i=1

αiφi

(
=

∞∑
i=1

γiuiφi

)

converge in (X , ‖ · ‖X )?

NB: The Karhunen-Loève expansion corresponds to γi ≡ 1, φi = λ
1/2
i ψi and

ui ∼ N(0, 1). This clearly does not converge in (X , ‖ · ‖X )!
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Distribution of the Coefficients αi = γiui

Example: The uniform prior takes γ ∈ `1 and ui ∼ U[−1, 1].

Well-defined? Let xN =
∑N

i=1 αiφi .

(N > M) ‖xN − xM‖X =

∥∥∥∥∥
N∑

i=M+1

αiφi

∥∥∥∥∥
X

≤
N∑

i=M+1

|αi | ‖φi‖X︸ ︷︷ ︸
=1

=
N∑

i=M+1

|γi | |ui |︸︷︷︸
≤P1

=
∞∑

i=M+1

|γi | → 0 as M →∞ (def’n of `1)

=⇒ (xN)∞N=1 Cauchy =⇒ converges to a limit in the Banach space X .
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Distribution of the Coefficients αi = γiui

Example: The uniform prior takes γ ∈ `1 and ui ∼ U[−1, 1].

Boundedness: Consider the specific choice ‖x‖X = ‖x‖∞ = supt |x(t)|. Then we
have that

x(t) ≥ −
∞∑
i=1

|αi | ‖φi‖X︸ ︷︷ ︸
=1

= −
∞∑
i=1

|γi | |ui |︸︷︷︸
≤P1

≥ −
∞∑
i=1

|γi |

= −‖γ‖1 < ∞ (def’n of `1).

Similarly x(t) ≤ ‖γ‖1.
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Distribution of the Coefficients αi = γiui

Example: The uniform prior takes γ ∈ `1 and ui ∼ U[−1, 1].

Distribution of marginals: Fix t. Then

x(t) =
∞∑
i=1

αiφi (t)

=
∞∑
i=1

γiuiφi (t)

=
∞∑
i=1

[γiφi (t)]︸ ︷︷ ︸
weight

ui︸︷︷︸
∼U[−1,1]

∼ “weighted Irwin-Hall”

but note that it is bounded (unlike, e.g. for a Gaussian process).
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Exercise: The Gaussian Case

Example: Consider functions x : Rd → R. The Gaussian prior has coefficients αi = γiui
where γi � i−

s
d and ui ∼ N(0, 1), for some s > 0.

Let {φi}∞i=1 be orthonormal in a Hilbert space (X , ‖ · ‖X ).

Let x =
∑∞

i=1 αiφi and consider a norm ‖x‖2
X ,t =

∑∞
i=1 i

2t
d α2

i for some t > 0. (This
is known as a “Hilbert scale” of X .)

Question: For which values of s, t does x =
∑∞

i=1 γiuiφi exist as a L2
P(X , ‖ · ‖X ,t)

limit?

i.e. For which values of s, t is E[‖x‖2
X ,t ] <∞?
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Conclusion

In Part I it has been argued that:

The onus is on us to establish principled statistical foundations that are general.

The Bayesian approach to inverse problems, popularised in Stuart [2010], provides
such a framework.

This enables us to go beyond Gaussian processes - but demands additional technical
details.

END OF PART I
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